Pt–Cu2O–Cu double injection diodes

1977 ◽  
Vol 55 (7-8) ◽  
pp. 727-734
Author(s):  
K. T. Chee ◽  
F. L. Weichman

We report here on recent measurements made on our Pt–Cu2O–Cu diodes, annealed at an air pressure of 1 to 2 Torr, which we interpret as due to double injection, i.e. injection of holes from the platinum electrode and injection of electrons from the copper–Cu2O junction into the single crystal Cu2O region. The measurements discussed here include the forward I–V characteristics at various temperatures, current vs. thickness relationship at constant voltage, the effect of photo-memory on the I–V characteristics, and the discovery of a negative resistance regime at below room temperature at sufficiently high injection levels. The analysis of the temperature dependence of the current in the ohmic and the [Formula: see text] regimes, together with the effect of photomemory on the I–V characteristics enable us to identify the [Formula: see text] regime as the Ashley–Milnes regime with field dependent mobility.

2021 ◽  
Vol 63 (9) ◽  
pp. 1321
Author(s):  
Т.А. Шайхулов ◽  
К.Л. Станкевич ◽  
К.И. Константинян ◽  
В.В. Демидов ◽  
Г.А. Овсянников

The temperature dependence of the voltage induced by the spin current was studied in an epitaxial thin-film La0.7Sr0.3MnO3 / SrIrO3 heterostructure deposited on a single-crystal NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the La0.7Sr0.3MnO3 ferromagnetic layer and was detected in the SrIrO3 layer due to inverse spin Hall effect. A significant increase of half-width of the spin current spectrum along with the rise of amplitude of the spin current upon cooling from room temperature (300 K) to 135 K were observed.


1970 ◽  
Vol 14 ◽  
pp. 433-440
Author(s):  
W. S. McCain ◽  
D. L. Albright ◽  
W. O. J. Boo

AbstractLattice constants were measured as a function of temperature by single crystal diffracrometry in the temperature range which includes the Néel temperature of VF2(TN= 7°K). The lattice constants of VF2(D4h14=P42m n m) were measured from room temperature down to 4.2°K. In this range rhe tetragonal c-axis contracts 0.58% from 3.2359 Å (RT) to 3.2170 Å (4.2°K). On the other hand, the a-axes show a net expansion of 0.18% from 4.8023 Å (RT) to 4.8110 Å at 4.2°K. The temperature dependence of the lattice constants can be correlated with anisotropy of exchange forces. Vanadium Ions occupy the center and corner positions of the unit cell. Strong magnetic interactions are directed parallel to the c-axis >001< with considerably weaker interactions parallel to the body diagonals >111< The relative strengths of the two exchange integrals are J >001< = 50 J >111<. As a consequence the magnetic ordering is one-dîmensional along the c-axis and the associated distortions arise from the strong magnetic interactions along this axis.


2007 ◽  
Vol 63 (6) ◽  
pp. 836-842 ◽  
Author(s):  
Sebastian Prinz ◽  
Karine M. Sparta ◽  
Georg Roth

The V4+ (spin ½) oxovanadates AV3O7 (A = Ca, Sr) were synthesized and studied by means of single-crystal X-ray diffraction. The room-temperature structures of both compounds are orthorhombic and their respective space groups are Pnma and Pmmn. The previously assumed structure of SrV3O7 has been revised and the temperature dependence of both crystal structures in the temperature ranges 297–100 K and 315–100 K, respectively, is discussed for the first time.


1983 ◽  
Vol 25 ◽  
Author(s):  
J. C. Hensel ◽  
R. T. Tung ◽  
J. M. Poate ◽  
F. C. Unterwald ◽  
D. C. Jacobson

ABSTRACTTransport studies have been performed on thin films of CoSi 2 and NiSis2 in the temperature range 1 to 300 K. The conductivities are metallic with essentially the same temperature dependence; however, the residual resistivities are markedly different even though the two silicides are structurally similar (the room temperature resistivity of NiSi2 being at least twice that of CoSi2 of 15 μΩ cm). The difference is attributed to intrinsic defects in NiSi2. This defect has been simulated by ion bombardment of the film where it is also shown that Matthiesen's rule is obeyed over a remarkable range of bombardment doses.


2004 ◽  
Vol 848 ◽  
Author(s):  
Jianding Yu ◽  
Paul-François Paradis ◽  
Takehiko Ishikawa ◽  
Shinichi Yoda

ABSTRACTContainerless processing is an attractive synthesis technique that permits deep undercooling and provides the possibility to solidify the undercooled liquid into a selected phase, and to synthesize materials with novel properties. Spheroidal BaTiO3 samples with a diameter of approximately 2mm were solidified by containerless processing, using an electrostatic levitation apparatus. Single crystal hexagonal BaTiO3 and polycrystalline perovskite BaTiO3 were successfully synthesized at different undercoolings levels. An oxygen-deficient single crystal of hexagonal BaTiO3 obtained with this method, exhibited a giant permittivity higher than 100000, with a loss component tanδ of about 0.1 at room temperature. The permittivity showed weak temperature dependence in the 70 K to 300 K range, and a dramatic drop by 2 orders of magnitude below 70 K. In comparison, the polycrystalline perovskite BaTiO3 showed a permittivity of 4000 at room temperature.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
I. Khidirov ◽  
V. V. Getmanskiy ◽  
A. S. Parpiev ◽  
Sh. A. Makhmudov

This work relates to the field of thermophysical parameters of refractory interstitial alloys. The isochoric heat capacity of cubic titanium carbide TiCx has been calculated within the Debye approximation in the carbon concentration  range x = 0.70–0.97 at room temperature (300 K) and at liquid nitrogen temperature (80 K) through the Debye temperature established on the basis of neutron diffraction analysis data. It has been found out that at room temperature with decrease of carbon concentration the heat capacity significantly increases from 29.40 J/mol·K to 34.20 J/mol·K, and at T = 80 K – from 3.08 J/mol·K to 8.20 J/mol·K. The work analyzes the literature data and gives the results of the evaluation of the high-temperature dependence of the heat capacity СV of the cubic titanium carbide TiC0.97 based on the data of neutron structural analysis. It has been proposed to amend in the Neumann–Kopp formula to describe the high-temperature dependence of the titanium carbide heat capacity. After the amendment, the Neumann–Kopp formula describes the results of well-known experiments on the high-temperature dependence of the heat capacity of the titanium carbide TiCx. The proposed formula takes into account the degree of thermal excitation (a quantized number) that increases in steps with increasing temperature.The results allow us to predict the thermodynamic characteristics of titanium carbide in the temperature range of 300–3000 K and can be useful for materials scientists.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25731-25737
Author(s):  
Maria Cristina Righetti ◽  
Maria Laura Di Lorenzo ◽  
Patrizia Cinelli ◽  
Massimo Gazzano

At room temperature and at the human body temperature, all the amorphous fraction is mobile in poly(butylene succinate).


Sign in / Sign up

Export Citation Format

Share Document