Pressure-injected anchors in sand: load and creep behaviour

1985 ◽  
Vol 22 (4) ◽  
pp. 456-465
Author(s):  
M. K. Mohamed ◽  
T. H. Hanna

This paper presents the results of recent research into the behaviour of pressure-injected anchors in sand. During the injection process, which was simulated by an anchor unit expanding radially as in a pressuremeter test, radial expansion was measured. In general there was a linear relationship between expansion pressure and static pull-out resistance. The creep coefficient was a function of the expansion pressure and the level of the applied load. The application of a small overload caused a significant reduction in creep. The reapplication of the expansion pressure resulted in an increase in pull-out capacity. The significance of these trends with respect to the control of anchor performance is discussed and the justification for some rules of thumb currently used during anchor construction are confirmed. Key words: anchors, sand, creep, testing, radial stress, relaxation, injection pressure, pressuremeter.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1739
Author(s):  
María García-Camprubí ◽  
Carmen Alfaro-Isac ◽  
Belén Hernández-Gascón ◽  
José Ramón Valdés ◽  
Salvador Izquierdo

Micro-surface texturing of elastomeric seals is a validated method to improve the friction and wear characteristics of the seals. In this study, the injection process of high-viscosity elastomeric materials in moulds with wall microprotusions is evaluated. To this end, a novel CFD methodology is developed and implemented in OpenFOAM to address rubber flow behaviour at both microscale and macroscale. The first approach allows analyzing the flow perturbation induced by a particular surface texture and generate results to calculate an equivalent wall shear stress that is introduced into the macroscale case through reduced order modelling. The methodology is applied to simulate rubber injection in textured moulds in an academic case (straight pipe) and a real case (D-ring seal mould). In both cases, it is shown that textured walls do not increase the injection pressure and therefore the manufacturing process is not adversely affected.



Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Fugang Wang ◽  
Zhaoxu Mi ◽  
Zhaojun Sun ◽  
Xufeng Li ◽  
Tianshan Lan ◽  
...  

The multistage and discontinuous nature of the injection process used in the geological storage of CO2 causes reservoirs to experience repeated loading and unloading. The reservoir permeability changes caused by this phenomenon directly impact the CO2 injection process and the process of CO2 migration in the reservoirs. Through laboratory experiments, variations in the permeability of sandstone in the Liujiagou formation of the Ordos CO2 capture and storage (CCS) demonstration project were analyzed using cyclic variations in injection pressure and confining pressure and multistage loading and unloading. The variation in the micropore structure and its influence on the permeability were analyzed based on micropore structure tests. In addition, the effects of multiple stress changes on the permeability of the same type of rock with different clay minerals content were also analyzed. More attention should be devoted to the influence of pressure variations on permeability in evaluations of storage potential and studies of CO2 migration in reservoirs in CCS engineering.



2016 ◽  
Vol 852 ◽  
pp. 1482-1487
Author(s):  
Fan Cheng ◽  
Yu Hao Jiang ◽  
Jin Bo Chen ◽  
Peng Bo Lu ◽  
Ling Feng Su ◽  
...  

Eco-friendly building materials with perfect thermal insulation & sound absorption property have become intriguing and eye-catching in recent years. In this work, the ultra low-density binderless sandwiching materials were firstly fabricated with ultra low-density of 60-80 kg/m3 by self-designed rapid steam injection technology. The main experimental factor of density, holding time, transmission time, steam injection pressure and fiber’s dimension was respectively investigated to their effects on formation of the new building materials. IR, Py GC-MS and AFM analysis were performed to study the mechanism of binderless sandwiching materials under steam injection process. The bending strength, thermal insulation & sound absorption property of the new materials were also studied. This new building material with no resin use and no formaldehyde release is expected to be reserved as the sandwich for designing thermal insulation & noise reduction building materials.



Author(s):  
Dinu Thomas Thekkuden ◽  
Abdel-Hamid I. Mourad ◽  
Abdel-Hakim Bouzid

Abstract The stress corrosion cracking of tube-to-tubesheet joints is one of the major faults causing heat exchanger failure. After the expansion process, the stresses are developed in a plastically deformed tube around the tube-to-tubesheet joint. These residual stressed joints, exposed to tube and shell side fluids, are the main crack initiation sites. Adequate contact pressure at the tube-to-tubesheet interface is required to produce a quality joint. Insufficient tube-to-tubesheet contact pressure leads to insufficient joint strength. Therefore, a study on the residual stress and contact pressure that have a great significance on the quality of the tube-to-tubesheet joint is highly demanded. In this research, a 2D axisymmetric numerical analysis is performed to study the effect of the presence of grooves in the tubesheet and the expansion pressure length on the distribution of contact pressure and stress during loading and unloading of 400 MPa expansion pressure. The results show that the maximum contact pressure is independent of the expansion pressure length. However, the presence of grooves significantly increased the maximum contact pressure. It is proven that the presence of grooves in the tubesheet is distinguishable from the maximum contact pressure and residual von mises equivalent stress. The tube pull-out strength increases with the expansion pressure and the number of grooves. In conclusion, the presence of the grooves affects the tube-to-tubesheet joints.



2019 ◽  
Vol 11 (05) ◽  
pp. 1950048 ◽  
Author(s):  
S. R. Wang ◽  
H. G. Xiao ◽  
Z. S. Zou ◽  
C. Cao ◽  
Y. H. Wang ◽  
...  

To evaluate mechanical performances of the transverse rib bar and reveal anchoring mechanism between the grout and steel bar, a series of pull-out tests were carried out, the numerical simulations and theoretical analysis of grout failure modes were also analyzed. Results show that the grout in front of the transverse rib display wedge-shape damage and the simulation results verify this damage forms. The formula of the effective transverse rib angle, the grout strength and anchorage force were derived based on elastic thick-wall cylinder theory. During the pull-out tests, the radial stress of the grout lagged the tangential stress reaching the ultimate tensile strength with the inner pressure increasing. The anchoring force of the transverse rib bar increases with the increase of the grout strength, and with the increase of the effective transverse rib angle. These conclusions provide the theoretical basis and technical support for the engineering practice.



2012 ◽  
Vol 524-527 ◽  
pp. 1190-1195
Author(s):  
Jian Jun Liu ◽  
Quan Shu Li ◽  
Gui Hong Pei

Channeling flow frequently occurs during the high pressure water injection of low permeability reservoir. The injection process is complex and covers so many parameters of which the contribution to channeling flow is necessarily to be studied. In this paper, numerical simulation is combined with sensitivity analysis method to calculate the significance of the weight of parameters to the channeling flow. First the values of different parameters are produced by using Latin hypercube method; second, by using these parameters, finite element model have been established and simulated, and the quantity of channeling flow has been calculated; then Spearman rank relation is applied to measure the relation of parameters and channeling flow. The results states that, in 10 years continuous injection, the well spacing and injection pressure have significant impact on the channeling flow. This states that during the application of high pressure water injection, the pressure and well spacing should be controlled especially.



2015 ◽  
Vol 52 (7) ◽  
pp. 868-882 ◽  
Author(s):  
Ioannis N. Markou ◽  
Dimitrios N. Christodoulou ◽  
Basil K. Papadopoulos

One-dimensional injection tests were conducted on sand columns with a height of 134 cm for the penetrability evaluation of microfine cement grouts. Three ordinary cement types were pulverized to obtain microfine cements having nominal maximum grain sizes of 20 and 10 μm, and these cements were used in the present investigation. Suspensions with water to cement (W/C) ratios of 1, 2, and 3, by weight, were injected into 13 clean sands with d15 ranging from 0.17 to 2.25 mm and Cu ranging from 1.19 to 6.67. Pulverization of the ordinary cements to produce microfine cements extends the range of groutable sands to “medium-to-fine”. Cement fineness; suspension W/C ratio and apparent viscosity; and sand grain size, gradation, and relative density are very important parameters, as they substantially affect both grout penetration and maximum injection pressure. The penetration length of cement grouts was correlated to parameters pertinent to the suspension, sand, and injection process by performing fuzzy and ordinary linear regression analyses of the injection test results. The resultant fuzzy regression models provided successful penetration length predictions for the majority of the cases analyzed, while the best ordinary regression model exhibited a correlation coefficient not higher than 0.363.



2013 ◽  
Vol 868 ◽  
pp. 677-681
Author(s):  
Yang Liu ◽  
Di Wu

CO2flooding can increase coal bed methane production rate, enhance coal bed methane recovery and store CO2into underground. It has good application prospect for CBM development. This paper analyzes the adsorption-desorption law of mixed gas in the coal during the CO2injection process, as well as the diffusion and seepage law of gas in the coal seam. The sensitivity of factors affecting coal bed methane production is studied and then the coal bed methane production under different conditions is simulated numerically. The results show that methane concentration and coals permeability are the two key factors affecting the output of coal bed gas and their influence on productivity are even more significant than injection pressure and initial pressure. The higher injection pressure, coals permeability and gas concentration, the greater amount of methane the coal reservoirs will yield. When the coals permeability and the gas concentration in coal reservoirs increase, the growth rate of methane production accelerates accordingly.



Author(s):  
Dumitru Nedelcu ◽  
Constantin Carausu ◽  
Ciprian Ciofu

The use of recyclable materials has become an important trend in all activity areas, reason why material based on liquid wood called Arbofill, Arboblend and Arboform will replace plastic in different applications in the near future. The new materials are the main substances that have an important effect on company development and require some simple or complex manufacturing technologies. In case of Arboform L, V3 Nature the injected parts can be obtained using the same injection machines used for the injection of plastic materials. The technological injection parameters, such as: injection pressure, injection time, cooling time, mold temperature, etc., are different. The experimental research focused on tensile strength, friction coefficients, SEM analysis, XRD analysis and EDAX analysis. Considering all of these experimental results the Arboform L, V3 Nature reinforced with aramid fibers could replace the following plastic materials PA12, PVDF, ECTFE, PA66, PA12, PC, PP, PP GF 30, etc. Also taking into account all the results obtained, this material can replace plastic materials in many applications, such as: ornaments, including for cars, connectors, switches etc., electrical industry, different mobile accessories, computers, televisions, mobile phone cases, etc. The material obtained from Arboform reinforced with aramid fibers (5% percent) improved the injection process despite of easy decreasing of mechanical properties.



2021 ◽  
Vol 42 ◽  
pp. 79-84
Author(s):  
Dragoș Tutunea ◽  
Ilie Dumitru ◽  
Laurenţiu Racilă

The objective of this paper is to investigate the fuel injection system in diesel engines by using inline pumps. In a diesel engines, the fuel injection pressure plays an important role in the combustion process in order to obtain high performance and low fuel consumption. The experiments in this paper are been performed on a 6 cylinder inline pump which is actioned by an electric motor with variable r.p.m.-s The quantity of the fuel injected by each injector is measured function of time and the speed of electric motor. The experiments show the degree of non-uniformity of the fuel delivered by the pump to injectors.



Sign in / Sign up

Export Citation Format

Share Document