Evidence of genetic drift in chestnut populations

1996 ◽  
Vol 26 (5) ◽  
pp. 905-908 ◽  
Author(s):  
N. Machon ◽  
L. Burel ◽  
M. Lefranc ◽  
N. Frascaria-Lacoste

The genetic diversity and differentiation of six French populations of chestnut, Castaneasativa Mill., were analysed with isozyme markers. This work extends previous studies on Italian and Turkish populations. Results suggest that human interference has dramatically reduced the number of alleles per locus. This reduction is probably due to the process of genetic drift, as successively smaller numbers of genotypes were sampled in the course of reforestation and subsequent propagation of this species.

2011 ◽  
Vol 86 (3) ◽  
pp. 291-297 ◽  
Author(s):  
A. Ananda Rao ◽  
K. Vijayan ◽  
M. Krubakaran ◽  
M. M. Borpujari ◽  
C. K. Kamble

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


2016 ◽  
Author(s):  
Stephen R. Doyle ◽  
Catherine Bourguinat ◽  
Hugues C. Nana-Djeunga ◽  
Jonas A. Kengne-Ouafo ◽  
Sébastien D.S. Pion ◽  
...  

ABSTRACTBackgroundTreatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana - exposed to more than a decade of regular ivermectin treatment - have raised concern that sub-optimal responses to ivermectin’s anti-fecundity effect are becoming more frequent and may spread.Methodology/Principal FindingsPooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.Conclusions/SignificanceThis study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait in which identical or related molecular pathways but not necessarily individual genes likely determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations.Author summaryOnchocerciasis is a human parasitic disease endemic across large areas of Sub-Saharan Africa, where more that 99% of the estimated 100 million people globally at-risk live. The microfilarial stage of Onchocerca volvulus causes pathologies ranging from mild itching to visual impairment and ultimately, irreversible blindness. Mass administration of ivermectin kills microfilariae and has an anti-fecundity effect on adult worms by temporarily inhibiting the development in utero and/or release into the skin of new microfilariae, thereby reducing morbidity and transmission. Phenotypic and genetic changes in some parasite populations that have undergone multiple ivermectin treatments in Cameroon and Ghana have raised concern that sub-optimal response to ivermectin’s anti-fecundity effect may increase in frequency, reducing the impact of ivermectin-based control measures. We used next generation sequencing of small pools of parasites to define genome-wide genetic differences between phenotypically characterised good and sub-optimal responder parasites from Cameroon and Ghana, and identified multiple genomic regions differentiating the response types. These regions were largely different between parasites from both countries but revealed common molecular pathways that might be involved in determining the extent of response to ivermectin’s anti-fecundity effect. These data reveal a more complex than previously described pattern of genetic diversity among O. volvulus populations that differ in their geography and response to ivermectin treatment.


2014 ◽  
Vol 281 (1797) ◽  
pp. 20142230 ◽  
Author(s):  
Amanda A. Pierce ◽  
Myron P. Zalucki ◽  
Marie Bangura ◽  
Milan Udawatta ◽  
Marcus R. Kronforst ◽  
...  

Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs ( Danaus plexippus ) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarch's ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species.


2019 ◽  
Vol 100 (4) ◽  
pp. 1169-1181 ◽  
Author(s):  
Russell S Pfau ◽  
Jim R Goetze ◽  
Robert E Martin ◽  
Kenneth G Matocha ◽  
Allan D Nelson

Abstract The Texas kangaroo rat (Dipodomys elator) is listed as a threatened species in Texas because of its scarcity and small geographic range. We assessed patterns of genetic diversity in D. elator that could affect extinction risk or influence management decisions. Specific objectives included: 1) document levels of genetic diversity, 2) document the degree and patterns of genetic divergence among localities, and 3) compare levels of genetic diversity between different time periods at the same locality. Portions of the mitochondrial genome (mtDNA; control region, cytochrome c oxidase subunit I, and cytochrome b) were sequenced and nuclear microsatellites were examined. Low mtDNA diversity was observed, which could be explained by an historical, species-wide genetic bottleneck. In contrast, microsatellites exhibited ample variation, and analyses were conducted using data from 11 loci and four populations (designated Quanah, Iowa Park, Vernon, and Harrold). Allelic diversity and heterozygosity were similar between populations and temporal samples. Estimates of effective population size (Ne) ranged from 5 to 856, depending on method and population, with Iowa Park showing consistently lower values than Quanah. All methods addressing population structure indicated that the Iowa Park population was divergent from the others, with Vernon and Harrold showing a somewhat intermediate relationship but with a closer affiliation with Quanah than Iowa Park, despite their closer proximity to Iowa Park. This pattern did not conform to isolation by distance, thus genetic drift appears to have played a greater role than gene flow in establishing genetic structure. There was much less difference between temporal samples compared to geographic samples, indicating that genetic drift has had only minimal impacts in shifting allelic frequencies over the time periods examined (17–36 years).


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 524
Author(s):  
Maeva Leitwein ◽  
Hugo Cayuela ◽  
Louis Bernatchez

The interplay between recombination rate, genetic drift and selection modulates variation in genome-wide ancestry. Understanding the selective processes at play is of prime importance toward predicting potential beneficial or negative effects of supplementation with domestic strains (i.e., human-introduced strains). In a system of lacustrine populations supplemented with a single domestic strain, we documented how population genetic diversity and stocking intensity produced lake-specific patterns of domestic ancestry by taking the species’ local recombination rate into consideration. We used 552 Brook Charr (Salvelinus fontinalis) from 22 small lacustrine populations, genotyped at ~32,400 mapped SNPs. We observed highly variable patterns of domestic ancestry between each of the 22 populations without any consistency in introgression patterns of the domestic ancestry. Our results suggest that such lake-specific ancestry patterns were mainly due to variable associative overdominance (AOD) effects among populations (i.e., potential positive effects due to the masking of possible deleterious alleles in low recombining regions). Signatures of AOD effects were also emphasized by highly variable patterns of genetic diversity among and within lakes, potentially driven by predominant genetic drift in those small isolated populations. Local negative effects such as negative epistasis (i.e., potential genetic incompatibilities between the native and the introduced population) potentially reflecting precursory signs of outbreeding depression were also observed at a chromosomal scale. Consequently, in order to improve conservation practices and management strategies, it became necessary to assess the consequences of supplementation at the population level by taking into account both genetic diversity and stocking intensity when available.


2010 ◽  
Vol 90 (3) ◽  
pp. 331-340 ◽  
Author(s):  
M G Melka ◽  
F. Schenkel

Conservation of animal genetic resources entails judicious assessment of genetic diversity as a first step. The objective of this study was to analyze the trend of within-breed genetic diversity and identify major causes of loss of genetic diversity in four swine breeds based on pedigree data. Pedigree files from Duroc (DC), Hampshire (HP), Lacombe (LC) and Landrace (LR) containing 480 191, 114 871, 51 397 and 1 080 144 records, respectively, were analyzed. Pedigree completeness, quality and depth were determined. Several parameters derived from the in-depth pedigree analyses were used to measure trends and current levels of genetic diversity. Pedigree completeness indexes of the four breeds were 90.4, 52.7, 89.6 and 96.1%, respectively. The estimated percentage of genetic diversity lost within each breed over the last three decades was approximately 3, 22, 12 and 2%, respectively. The relative proportion of genetic diversity lost due to random genetic drift in DC, HP, LC and LR was 74.5, 63.6, 72.9 and 60.0%, respectively. The estimated current effective population size for DC, HP, LC and LR was 72, 14, 36 and 125, respectively. Therefore, HP and LC have been found to have lost considerable genetic diversity, demanding priority for conservation. Key words: Genetic drift, effective population size


2021 ◽  
Author(s):  
María Eugenia Barrandeguy ◽  
María Victoria García

Genetic diversity comprises the total of genetic variability contained in a population and it represents the fundamental component of changes since it determines the microevolutionary potential of populations. There are several measures for quantifying the genetic diversity, most notably measures based on heterozygosity and measures based on allelic richness, i.e. the expected number of alleles in populations of same size. These measures differ in their theoretical background and, in consequence, they differ in their ecological and evolutionary interpretations. Therefore, in the present chapter these measures of genetic diversity were jointly analyzed, highlighting the changes expected as consequence of gene flow and genetic drift. To develop this analysis, computational simulations of extreme scenarios combining changes in the levels of gene flow and population size were performed.


2021 ◽  
Author(s):  
◽  
Kimberly Anne Miller

<p>As habitat loss, introduced predators, and disease epidemics threaten species worldwide, translocation provides one of the most powerful tools for species conservation. However, reintroduced populations of threatened species are often founded by a small number of individuals (typically 30 in New Zealand) and generally have low success rates. The loss of genetic diversity combined with inbreeding depression in a small reintroduced population could reduce the probability of establishment and persistence. Effective management of genetic diversity is therefore central to the success of reintroduced populations in both the short- and long-term. Using population modelling and empirical data from source and reintroduced populations of skinks and tuatara, I examined factors that influence inbreeding dynamics and the long-term maintenance of genetic diversity in translocated populations. The translocation of gravid females aided in increasing the effective population size after reintroduction. Models showed that supplementation of reintroduced populations reduced the loss of heterozygosity over 10 generations in species with low reproductive output, but not for species with higher output. Harvesting from a reintroduced population for a second-order translocation accelerated the loss of heterozygosity in species with low intrinsic rates of population growth. Male reproductive skew also accelerated the loss of genetic diversity over 10 generations, but the effect was only significant when the population size was small. Further, when populations at opposite ends of a species' historic range are disproportionately vulnerable to extinction and background inbreeding is high, genetic differentiation among populations may be an artefact of an historic genetic gradient coupled with rapid genetic drift. In these situations, marked genetic differences should not preclude hybridising populations to mitigate the risks of inbreeding after reintroduction. These results improve translocation planning for many species by offering guidelines for maximising genetic diversity in founder groups and managing populations to improve the long-term maintenance of diversity. For example, founder groups should be larger than 30 for  reintroductions of species with low reproductive output, high mortality rates after release, highly polygynous mating systems, and high levels of background inbreeding. This study also provides a basis for the development of more complex models of losses of genetic diversity after translocation and how genetic drift may affect the long-term persistence of these valuable  populations.</p>


Sign in / Sign up

Export Citation Format

Share Document