MEAL-EATING AND LIPOGENESIS IN VITRO OF RATS FED A LOW-PROTEIN DIET

1964 ◽  
Vol 42 (5) ◽  
pp. 665-670 ◽  
Author(s):  
J. R. Beaton ◽  
V. Feleki ◽  
A. J. Szlavko ◽  
J. A. F. Stevenson

The response of male rats to the restriction of food intake to 2 hours each day for 14 to 16 days has been assessed by the measurement of food intakes, body weights, liver glycogen concentrations, and lipogenesis of adipose tissue (C14-acetate incorporation in vitro). The animals were fed either a 20% casein diet (controls) or an isocaloric 5% casein diet. As a consequence of meal-eating, and regardless of dietary protein level, the average daily food intake and body weight gain were decreased whereas the lipogenesis in vitro and liver glycogen concentration were increased in comparison with rats fed ad libitum,which is in agreement with earlier findings using normal diets. These observations suggest that the decreased body fat of rats fed a 5% casein diet is not a consequence of an impaired ability of adipose tissue to synthesize fat.

2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


1965 ◽  
Vol 43 (2) ◽  
pp. 241-249
Author(s):  
J. R. Beaton ◽  
J. F. Sangster

Young male rats were fed one of three low-protein (5% casein) diets differing in the source of carbohydrate (sucrose, equal parts sucrose and cornstarch, or cornstarch) or a 20% casein (sucrose) diet at environmental temperatures of 24 °C or 5 °C. Replacement of sucrose with starch appeared to have a small but significant effect in increasing body weight gain for 15 days (but not the next 28 days) at 24 °C and also in animals exposed to cold for 28 days after a 15-day feeding period at 24 °C. In disagreement with results reported by Andik et al., cold exposure, although significantly increasing body weight gain and food intake in rats fed the 5% casein – starch diet, did not elicit a weight gain as great as that observed in 20% casein-fed animals at either 24 °C or 5 °C. The 24-hour food intake following a 24-hour fast exceeded the intake on the day before fasting on all diets for animals maintained at 5 °C but not 24 °C. The immediate ([Formula: see text] hour) and 24-hour food intakes of rats at 5 °C exceeded those of comparable dietary groups at 24 °C. At 5 °C, the 24-hour food intake, following the fast, of rats fed the 5% casein – starch diet exceeded that of the 20% casein-fed controls.


2009 ◽  
Vol 297 (5) ◽  
pp. E1222-E1232 ◽  
Author(s):  
Qianning Jiao ◽  
Anne M. Pruznak ◽  
Danuta Huber ◽  
Thomas C. Vary ◽  
Charles H. Lang

Reduced testosterone as a result of catabolic illness or aging is associated with loss of muscle and increased adiposity. We hypothesized that these changes in body composition occur because of altered rates of protein synthesis under basal and nutrient-stimulated conditions that are tissue specific. The present study investigated such mechanisms in castrated male rats (75% reduction in testosterone) with demonstrated glucose intolerance. Over 9 wk, castration impaired body weight gain, which resulted from a reduced lean body mass and preferential sparing of adipose tissue. Castration decreased gastrocnemius weight, but this atrophy was not associated with reduced basal muscle protein synthesis or differences in plasma IGF-I, insulin, or individual amino acids. However, oral leucine failed to normally stimulate muscle protein synthesis in castrated rats. In addition, castration-induced atrophy was associated with increased 3-methylhistidine excretion and in vitro-determined ubiquitin proteasome activity in skeletal muscle, changes that were associated with decreased atrogin-1 or MuRF1 mRNA expression. Castration decreased heart and kidney weight without reducing protein synthesis and did not alter either cardiac output or glomerular filtration. In contradistinction, the weight of the retroperitoneal fat depot was increased in castrated rats. This increase was associated with an elevated rate of basal protein synthesis, which was unresponsive to leucine stimulation. Castration also decreased whole body fat oxidation. Castration increased TNFα, IL-1α, IL-6, and NOS2 mRNA in fat but not muscle. In summary, the castration-induced muscle wasting results from an increased muscle protein breakdown and the inability of leucine to stimulate protein synthesis, whereas the expansion of the retroperitoneal fat depot appears mediated in part by an increased basal rate of protein synthesis-associated increased inflammatory cytokine expression.


2005 ◽  
Vol 288 (6) ◽  
pp. R1486-R1491 ◽  
Author(s):  
Lisa A. Eckel ◽  
Heidi M. Rivera ◽  
Deann P. D. Atchley

The controls of food intake differ in male and female rats. Daily food intake is typically greater in male rats, relative to female rats, and a decrease in food intake, coincident with the estrous stage of the ovarian reproductive cycle, is well documented in female rats. This estrous-related decrease in food intake has been attributed to a transient increase in the female rat's sensitivity to satiety signals generated during feeding bouts. Here, we investigated whether sex or stage of the estrous cycle modulate the satiety signal generated by fenfluramine, a potent serotonin (5-HT) releasing agent. To examine this hypothesis, food intake was monitored in male, diestrous female, and estrous female rats after intraperitoneal injections of 0, 0.25, and 1.0 mg/kg d-fenfluramine. The lower dose of fenfluramine decreased food intake only in diestrous and estrous females, suggesting that the minimally effective anorectic dose of fenfluramine is lower in female rats, relative to male rats. Although the larger dose of fenfluramine decreased food intake in both sexes, the duration of anorexia was greater in diestrous and estrous female rats, relative to male rats. Moreover, the magnitude of the anorectic effect of the larger dose of fenfluramine was greatest in estrous rats, intermediate in diestrous rats, and least in male rats. Thus our findings indicate that the anorectic effect of fenfluramine is modulated by gonadal hormone status.


Author(s):  
Tammy Ying ◽  
Thea N. Golden ◽  
Lan Cheng ◽  
Jeff Ishibashi ◽  
Patrick Seale ◽  
...  

The cytokine interleukin 4 (IL-4) can increase beige adipogenesis in adult rodents. However, neonatal animals use a distinct adipocyte precursor compartment for adipogenesis compared to adults. In this study, we address whether IL-4 can induce persistent effects on adipose tissue when administered subcutaneously in the interscapular region during the neonatal period in Sprague Dawley rats. We injected IL-4 into neonatal male rats during postnatal days 1-6, followed by analysis of adipose tissue and adipocyte precursors at 2 weeks and 10 weeks of age. Adipocyte precursors were cultured and subjected to differentiation in vitro. We found that a short and transient IL-4 exposure in neonates upregulated uncoupling protein 1 (Ucp1) mRNA expression and decreased fat cell size in subcutaneous white adipose tissue (WAT). Adipocyte precursors from mature rats that had been treated with IL-4 as neonates displayed a decrease in adiponectin (Adipoq) but no change in Ucp1 expression, as compared to controls. Thus, neonatal IL-4 induces acute beige adipogenesis and decreases adipogenic differentiation capacity long term. Overall, these findings indicate that the neonatal period is critical for adipocyte development and may influence the later onset of obesity.


1983 ◽  
Vol 11 (01n04) ◽  
pp. 88-95 ◽  
Author(s):  
Masahiro Yamamoto ◽  
Akira Kumagai ◽  
Yuichi Yamamura

Ascited hepatoma (AH41C or AH130) was transplanted to male rats Donryu, strain. Plasma cholesterol, triglyceride (TG) and non-esterified fatty acid levels were reduced with oral administration of ginseng principle fraction 3 (saponin content, ca. 1/5). Incorporation of 1-[14C]-acetate into total lipids and fatty acids in adipose tissue was increased by fraction 3 administration in both normal and tumor-bearing rats. The incorporation increased in earlier stage of tumor growth and decreased in the later one. Incorporation of 1-[14C]-acetate into total lipid, free and esterified cholesterol, TG and phospholipid in the liver was also enhanced by fraction 3 administration in both normal and tumor-bearing animals. In vitro addition of ginseng principle fraction 4 (saponin content, ca. 1/2) increased incorporation of 1-[14C]-acetate into lipid fraction is adipose tissue and liver. Incorporation of 1-[14C]-acetate into lipid fractions in ascites hepatoma cells remained unchanged with both oral administration of fraction 3 and in vitro addition of fraction 4. DNA and protein synthesis in the tumor cells was not changed with in vitro addition of fraction 4.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract BackgroundPrescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant sedation, weight gain, and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.MethodsTo investigate the efficacy of interventions of statin aimed at reversing SGA-induced dyslipidemia, young Sprague Dawley (SD) rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks.ResultsOlanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but had no significant effect on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. A down-regulating of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) expression was observed in brown adipose tissue (BAT) in the olanzapine-only group, following a significant decrease in the ratio of phosphorylated PKA (p-PKA)/PKA. Interestingly, these protein changes could be reversed by co-treatment with O+B. Our results demonstrated simvastatin to be effective in ameliorating TC and TG elevated by olanzapine.ConclusionsModulation of BAT activity could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract Background Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.Methods To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks. Results Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O+B. Conclusions Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


1988 ◽  
Vol 255 (4) ◽  
pp. R616-R621 ◽  
Author(s):  
J. O. Hill ◽  
J. C. Anderson ◽  
D. Lin ◽  
F. Yakubu

The effects of differences in meal frequency on body weight, body composition, and energy expenditure were studied in mildly food-restricted male rats. Two groups were fed approximately 80% of usual food intake (as periodically determined in a group of ad libitum fed controls) for 131 days. One group received all of its food in 2 meals/day and the other received all of its food in 10-12 meals/day. The two groups did not differ in food intake, body weight, body composition, food efficiency (carcass energy gain per amount of food eaten), or energy expenditure at any time during the study. Both food-restricted groups had a lower food intake, body weight gain, and energy expenditure than a group of ad libitum-fed controls. In conclusion, these results suggest that amount of food eaten, but not the pattern with which it is ingested, has a major influence on energy balance during mild food restriction.


2000 ◽  
Vol 279 (6) ◽  
pp. E1398-E1405 ◽  
Author(s):  
Valérie Serazin-Leroy ◽  
Mireille Morot ◽  
Philippe de Mazancourt ◽  
Yves Giudicelli

Adipose tissue is an important source of angiotensinogen (ATG), and hypertension is commonly associated with android obesity. Therefore, we tested the hypothesis that androgens may control ATG gene expression and secretion in rat fat cells. In intact male rats, ATG mRNA expression (Northern blot and co-reverse transcription-polymerase chain reaction analysis) and protein secretion were significantly higher in deep intra-abdominal (perirenal and epididymal) than in subcutaneous adipocytes. After castration, ATG mRNA was reduced almost 50% in the three fat deposits, with parallel changes in ATG protein secretion. Conversely, testosterone treatment fully restored the ATG mRNA decrease after castration, whatever the anatomical origin of the adipocytes. Finally, a 24-h in vitro exposure of perirenal fat cells or differentiated preadipocytes from castrated rats to testosterone or dihydrotestosterone (10 nM free hormone concentration) increased ATG mRNA expression by 50–100%, an effect that was prevented by the anti-androgen cyproterone acetate. These data, demonstrating both in vivo and in vitro androgen induction of ATG mRNA expression in rat adipocytes, add further weight to the hypothesis of a link between adipose tissue ATG production, androgens, and android obesity-related hypertension.


Sign in / Sign up

Export Citation Format

Share Document