Controversy in fatty acid balance

1993 ◽  
Vol 71 (9) ◽  
pp. 707-712 ◽  
Author(s):  
John E. Van Aerde ◽  
M. T. Clandinin

It is uncertain whether preterm infants can synthesize C20 and C22 (ω−6) and (ω−3) fatty acids required for structural lipids. Dietary intake of CI8:2ω−6 and C18:3ω−3 in formulae lacking long-chain polyunsaturated fatty acids can result in reduced levels of C20 and C22 homologues in membrane phospholipids as compared with breast-fed infants. Supplementation of fish oil has been shown to alleviate this problem in part only, as synthesis and incorporation of arachidonic acid into membrane phospholipids is reduced. Presently, infant formulae do not contain C20 and C22 fatty acids. Feeding an experimental infant formula with a balance between C20 and C22 (ω−6) and (ω−3) fatty acids within the range of human milk results in plasma phospholipid levels of C20 and C22 long-chain polyunsaturated (ω−6) and (ω−3) fatty acids similar to those in breast-fed infants. On the basis of clinical studies and evolutionary data, an increase of the linolenic and a decrease of the linoleic acid content in infant formula are suggested. Balanced incorporation of both (ω−6) and (ω−3) long-chain polyunsaturated fatty acids seems advisable in view of the lack of knowledge concerning the neonate's ability to chain elongate and desaturate essential fatty acids. Recommendations for the essential fatty acid content of preterm infant formula are suggested.Key words: essential fatty acids, long-chain polyunsaturated fatty acids, infant formula, fish oil, desaturation.

1993 ◽  
Vol 71 (9) ◽  
pp. 683-683 ◽  
Author(s):  
M. T. Clandinin

Metabolism of long-chain polyunsaturated fatty acids derived from 18:2ω−6 and 18:3ω−3 by chain elongation – desaturation is essential for synthesis of complex structural lipids, leukotrienes, thromboxanes, and prostaglandins. These essential fatty acids are required for normal function in developing tissues and appropriate maturation of a wide variety of physiological processes. During development, fetal accretion of long-chain metabolites of ω−6 and ω−3 fatty acids may result from maternal or placental synthesis and transfer or, alternatively, from the metabolism of 18:2ω−6 and 18:3ω−3 to longer chain homologues by the fetus. After birth the infant must synthesize or be fed the very long chain polyunsaturated fatty acids of C20 and C22 type derived from 18:2ω−6 and 18:3ω−3.Metabolism of ω−6 and ω−3 fatty acids utilizes the same enzyme system and is competitive. When levels of dietary ω−3 and ω−6 C18 fatty acids are altered, the levels of metabolites of these precursor fatty acids change in specific brain membranes, influencing membrane lipid dependent functions. For example, a diet unbalanced in very long chain ω−3 and ω−6 fatty acids may increase brain membrane ω−3 fatty acid content when 20:5ω−3 is fed, while decreasing membrane fatty acid content of the ω−6 series of competing fatty acids. As 20:4ω−6 is quantitatively and qualitatively important to brain phospholipid, significant reduction in brain levels of 20:4ω−6 may be less than optimal. The impact of these compositional changes on brain function is not yet clear.The authors in this symposium address how this general area of essential fatty acid metabolism is relevant to the evolution of man, growth and development of fish, function of the retina and neural tissue, cognitive development of infants, and infant nutrition.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mariarita Dessì ◽  
Annalisa Noce ◽  
Pierfrancesco Bertucci ◽  
Simone Manca di Villahermosa ◽  
Rossella Zenobi ◽  
...  

Phospholipids play an essential role in cell membrane structure and function. The length and number of double bonds of fatty acids in membrane phospholipids are main determinants of fluidity, transport systems, activity of membrane-bound enzymes, and susceptibility to lipid peroxidation. The fatty acid profile of serum lipids, especially the phospholipids, reflects the fatty acid composition of cell membranes. Moreover, long-chain n-3 polyunsatured fatty acids decrease very-low-density lipoprotein assembly and secretion reducing triacylglycerol production. N-6 and n-3 polyunsatured fatty acids are the precursors of signalling molecules, termed “eicosanoids,” which play an important role in the regulation of inflammation. Eicosanoids derived from n-6 polyunsatured fatty acids have proinflammatory actions, while eicosanoids derived from n-3 polyunsatured fatty acids have anti-inflammatory ones. Previous studies showed that inflammation contributes to both the onset and progression of atherosclerosis: actually, atherosclerosis is predominantly a chronic low-grade inflammatory disease of the vessel wall. Several studies suggested the relationship between long-chain n-3 polyunsaturated fatty acids and inflammation, showing that fatty acids may decrease endothelial activation and affect eicosanoid metabolism.


1996 ◽  
Vol 315 (1) ◽  
pp. 329-333 ◽  
Author(s):  
Danielle MARTIN ◽  
Kelly A. MECKLING-GILL

Here we show that in vitro supplementation of L1210 murine lymphoblastic leukaemia cells with n-3 polyunsaturated fatty acids results in considerable changes in the fatty acid composition of membrane phospholipids. Incubations for 48 h with 30 μM eicosapentaenoic acid (20:5, n-3; EPA) or docosahexaenoic acid (22:6, n-3; DHA) results primarily in substitution of long-chain n-6 fatty acids with long-chain n-3 fatty acids. This results in a decrease in the n-6/n-3 ratio from 6.9 in unsupplemented cultures to 1.2 or 1.6 for EPA and DHA supplemented cultures, respectively. Coincident with these changes in membrane fatty acid composition, we observed a 5-fold increase in the rate of adenosine (5 μM) uptake via the nitrobenzylthioinosine (NBMPR)-sensitive nucleoside transporter in EPA- and DHA- supplemented L1210 cells, relative to unsupplemented cells. This seemed to result from a decrease in the Km for adenosine from 12.5 μM in unsupplemented cultures to 5.1 μM in DHA-treated cultures. Guanosine (50 μM) transport was similarly affected by DHA with a 3.5-fold increase in the initial rate of uptake. In contrast, pyrimidine transport, as measured by uptake of thymidine and cytidine, was not similarly affected, suggesting that substrate recognition had been altered by fatty acid supplementation. Studies using [3H]NBMPR showed that there was no effect of EPA or DHA on either the number of NBMPR-binding sites or the affinity of these sites for NBMPR. This observation suggests that the increases in adenosine and guanosine transport were not due to increases in the number of transporter sites but rather that EPA and DHA directly or indirectly modulate transporter function.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Mario Ruiz ◽  
Rakesh Bodhicharla ◽  
Emma Svensk ◽  
Ranjan Devkota ◽  
Kiran Busayavalasa ◽  
...  

Dietary fatty acids are the main building blocks for cell membranes in animals, and mechanisms must therefore exist that compensate for dietary variations. We isolated C. elegans mutants that improved tolerance to dietary saturated fat in a sensitized genetic background, including eight alleles of the novel gene fld-1 that encodes a homolog of the human TLCD1 and TLCD2 transmembrane proteins. FLD-1 is localized on plasma membranes and acts by limiting the levels of highly membrane-fluidizing long-chain polyunsaturated fatty acid-containing phospholipids. Human TLCD1/2 also regulate membrane fluidity by limiting the levels of polyunsaturated fatty acid-containing membrane phospholipids. FLD-1 and TLCD1/2 do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. We conclude that inhibition of FLD-1 or TLCD1/2 prevents lipotoxicity by allowing increased levels of membrane phospholipids that contain fluidizing long-chain polyunsaturated fatty acids.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (<xref ref-type="decision-letter" rid="SA1">see decision letter</xref>).


Author(s):  
Zinaida V. Krivova ◽  
Yevhen I. Maltsev ◽  
Maxim S. Kulikovskiy

Fatty acids are widely used in various fields: in medicine, agriculture, in the production of dietary supplement and biofuels, for the maintenance of aquaculture. The main source of fatty acids is fish oil. The relevance of the search for an alternative to fish oil as a source of fatty acids remains relevant today. Many microalgae accumulate fatty acids in quantities sufficient for use in biotechnology. Many studies are currently being conducted on the biochemistry of eustigmatophyceae algae. Most representatives of this class accumulate such polyunsaturated fatty acids as eicosapentaenoic and docosahexaenoic, which are in demand in biotechnology, while maintaining the necessary growth rates of biomass. The strains of Vischeria vischeri described in this work were isolated from soil samples. The obtained fatty acid profiles show that the strains when growing on a BBM medium with a triple nitrogen concentration store a high percentage of saturated palmitic, monounsaturated palmitoleic and polyunsaturated eicosopentaenoic acids. In addition, one of the strains accumulates rare long-chain polyunsaturated fatty acids: stearidonic acid, eicosodienoic acid, and digomo-γ-linoleic acid. Also, an experiment on phosphorus deprivation was conducted with these strains: as a result of this study, it was found that the composition of the fatty acids of the strains practically did not change, however, the concentrations of saturated and monounsaturated acids became higher, and polyunsaturated ones decreased. This trend in changes in the concentrations of fatty acids remained for all the described strains. The strains have been shown to accumulate long-chain saturated fatty acids: behenic and cerotic.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yutaka Tashiro

Purpose This study aimed to analyze the lipid content and fatty acid composition in the liver and muscle of a porcupinefish species inhabiting waters around the Ryukyu Islands to investigate their potential as a source of long-chain n-3 polyunsaturated fatty acids (LC-PUFAs). Design/methodology/approach Porcupinefish were collected along the Okinawa Island coast. The composition of fatty acids and cholesterol in both liver and muscle were analyzed using a gas chromatograph mass spectrometer. Findings The liver of Okinawan long-spine porcupinefish was rich in lipids whose content correlated to the proportion of liver/body weight. Fatty acid compositions in their liver and muscles were similar to each other. LC-PUFAs occupied 44% of total fatty acids, with docosahexaenoic acid (DHA) being the dominant (42%), whereas eicosapentaenoic acid occupied 2.4%. The liver contained 1,690 mg of cholesterol and 14.8 g of DHA per 100 g, whose proportion decreased in summer compared to other seasons (p = 0.036). Originality/value The liver of Okinawan long-spine porcupinefish, which has not yet been commercially used although its non-toxicity is claimed, can be an excellent source of LC-PUFAs, especially DHA, accentuating its potential in food supplements’ production.


Sign in / Sign up

Export Citation Format

Share Document