scholarly journals Tissue-wide integration of mechanical cues promotes effective auxin patterning

2021 ◽  
Vol 136 (2) ◽  
Author(s):  
João R. D. Ramos ◽  
Alexis Maizel ◽  
Karen Alim

AbstractNew plant organs form by local accumulation of auxin, which is transported by PIN proteins that localize following mechanical stresses. As auxin itself modifies tissue mechanics, a feedback loop between tissue mechanics and auxin patterning unfolds—yet the impact of tissue-wide mechanical coupling on auxin pattern emergence remains unclear. Here, we use a model composed of a vertex model for plant tissue mechanics and a compartment model for auxin transport to explore the collective mechanical response of the tissue to auxin patterns and how it feeds back onto auxin transport. We compare a model accounting for a tissue-wide mechanical integration to a model that regards cells as mechanically isolated. We show that tissue-wide mechanical coupling not only leads to more focused auxin spots via stress redistribution, but that it also mitigates the disruption to patterning when considering noise in the mechanical properties of each cell of the tissue. We find that this mechanism predicts that a local turgor increase correlates with auxin concentration, and yet auxin spots can exist regardless of the exact local turgor distribution.

2019 ◽  
Author(s):  
João R. D. Ramos ◽  
Alexis Maizel ◽  
Karen Alim

New plants organs form by local accumulation of auxin, which is transported by PIN proteins that localize following mechanical stresses. As auxin itself modifies tissue mechanics, a feedback loop between tissue mechanics and auxin patterning unfolds – yet the impact of tissue-wide mechanical coupling on auxin pattern emergence remains unclear. Here, we use a hybrid model composed of a vertex model for plant tissue mechanics, and a compartment model for auxin transport to explore the collective mechanical response of the tissue to auxin patterns and how it feeds back onto auxin transport. We compare a model accounting for a tissue-wide mechanical integration to a model where mechanical stresses are averaged out across the tissue. We show that only tissue-wide mechanical coupling leads to focused auxin spots, which we show to result from the formation of a circumferential stress field around these spots, self-reinforcing PIN polarity and auxin accumulation.


2000 ◽  
Vol 13 (10) ◽  
pp. 1121-1129 ◽  
Author(s):  
Aska Goverse ◽  
Hein Overmars ◽  
Jan Engelbertink ◽  
Arjen Schots ◽  
Jaap Bakker ◽  
...  

Various lines of evidence show that local changes in the auxin concentration are involved in the initiation and directional expansion of syncytia induced by cyst nematodes. Analysis of nematode infections on auxin-insensitive tomato and Arabidopsis mutants revealed various phenotypes ranging from complete inhibition of syncytium development to a decrease in hypertrophy and lateral root formation at the infection site. Specific activation of an auxin-responsive promoter confirmed the role of auxin and pointed at a local accumulation of auxin in developing syncytia. Disturbance of auxin gradients by inhibiting polar auxin transport with N-(1-naphthyl)phtalamic acid (NPA) resulted in abnormal feeding cells, which were characterized by extreme galling, massive disordered cell divisions in the cortex, and absence of radial expansion of the syncytium initial toward the vascular bundle. The role of auxin gradients in guiding feeding cell morphogenesis and the cross-talk between auxin and ethylene resulting in a local activation of cell wall degrading enzymes are discussed.


2010 ◽  
Vol 152-153 ◽  
pp. 164-170
Author(s):  
Jie Liu ◽  
Jian Lin Li ◽  
Ying Xia Li ◽  
Shan Shan Yang ◽  
Ji Fang Zhou ◽  
...  

Specific to the improvement in the present research of mechanical response under cyclic loading, this paper, taking the calcareous middle- coarse sandstone as the research subject and the RMT-150C experimental system in which data is recoded by ms magnitude as the platform, develops several related models concerning the unloading rate of triangle waves. The unloading process is divided into lag time segment and non-lag time segment, with criterions and related parameters provided as well. The term apparent elastic modulus is defined. The test data analysis shows that there exist a linear relationship between the apparent modulus and instant vertical force before load damage in non-lag time segment. On the preceding basis, a rate-dependent model of triangular wave un-installation section in non-lag time segment is established. Due to the inability of the loading equipment to accurately input the triangle wave, the average loading rate is amended and a constant term is added into it. The model is proved to be reliable, as the predicted value of the deformation rate and the stress strain curve coincides with measured value. At the same time, the impact of the lag time is pointed out quantitatively and a predication model of lag time segment is set up.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Valery V. Prokhorov ◽  
Nikolay A. Barinov ◽  
Kirill A. Prusakov ◽  
Evgeniy V. Dubrovin ◽  
Maxim D. Frank-Kamenetskii ◽  
...  

Highlights DNA kinking is inevitable for the highly anisotropic 1D–1D electrostatic interaction with the one-dimensionally periodically charged surface. The double helical structure of the DNA kinetically trapped on positively charged monomolecular films comprising the lamellar templates is strongly laterally stressed and extremely perturbed at the nanometer scale. The DNA kinetic trapping is not a smooth 3D—> 2D conformational flattening but is a complex nonlinear in-plane mechanical response (bending, tensile and unzipping) driven by the physics beyond the scope of the applicability of the linear worm-like chain approximation. Abstract Up to now, the DNA molecule adsorbed on a surface was believed to always preserve its native structure. This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated. High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled. We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress (> 30 pNnm) inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges. In addition, the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity. The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending. The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics. The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear. The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.


2020 ◽  
Vol 222 (7) ◽  
pp. 1138-1144 ◽  
Author(s):  
Sarah M Bartsch ◽  
Elizabeth A Mitgang ◽  
Gail Geller ◽  
Sarah N Cox ◽  
Kelly J O’Shea ◽  
...  

Abstract Background The protection that an influenza vaccine offers can vary significantly from person to person due to differences in immune systems, body types, and other factors. The question, then, is what is the value of efforts to reduce this variability such as making vaccines more personalized and tailored to individuals. Methods We developed a compartment model of the United States to simulate different influenza seasons and the impact of reducing the variability in responses to the influenza vaccine across the population. Results Going from a vaccine that varied in efficacy (0–30%) to one that had a uniform 30% efficacy for everyone averted 16.0–31.2 million cases, $1.9–$3.6 billion in direct medical costs, and $16.1–$42.7 billion in productivity losses. Going from 0–50% in efficacy to just 50% for everyone averted 27.7–38.6 million cases, $3.3–$4.6 billion in direct medical costs, and $28.8–$57.4 billion in productivity losses. Going from 0–70% to 70% averted 33.6–54.1 million cases, $4.0–$6.5 billion in direct medical costs, and $44.8–$64.7 billion in productivity losses. Conclusions This study quantifies for policy makers, funders, and vaccine developers and manufacturers the potential impact of efforts to reduce variability in the protection that influenza vaccines offer (eg, developing vaccines that are more personalized to different individual factors).


2007 ◽  
Vol 539-543 ◽  
pp. 1863-1867 ◽  
Author(s):  
X.F. Tao ◽  
Li Ping Zhang ◽  
Y.Y. Zhao

This paper investigated the mechanical response of porous copper manufactured by LCS under three-point bending and Charpy impact conditions. The effects of the compaction pressure and K2CO3 particle size used in producing the porous copper samples and the relative density of the samples were studied. The apparent modulus, flexural strength and energy absorption capacity in three-point bending tests increased exponentially with increasing relative density. The impact strength was not markedly sensitive to relative density and had values within 7 – 9 kJ/m2 for the relative densities in the range 0.17 – 0.31. The amount of energy absorbed by a porous copper sample in the impact test was much higher than that absorbed in the three-point bending test, impling that loading strain rate had a significant effect on the deformation mechanisms. Increasing compaction pressure and increasing K2CO3 particle size resulted in significant increases in the flexural strength and the bending energy absorption capacity, both owing to the reduced sintering defects.


2009 ◽  
Vol 40 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Tadeusz Ostrowski

Self-esteem and social support in the occupational stress-subjective health relationship among medical professionals The starting point for the presented study was the concept by House who construed social support as buffering the impact of work-related stress on health. Self-esteem was taken under consideration as the other potential stress buffer. It was hypothesized that both social support and self-esteem would have a salutogenic effect, since they attenuate the experience of occupational stress and reduce health problems associated with the experienced job stress. Participants in the study were 361 medical professionals representing various specialties. They were examined using the Subjective Job Evaluation Questionnaire by Dudek et al., the Mood and Health State Questionnaire by Rząsa, the Self-Esteem Scale by M. Rosenberg and Significant Other Scale by Power et al. The higher was the respondents' occupational stress, the poorer was their subjective physical health. Such components of occupational stress as responsibility, psychological strain due to job complexity, lack of rewards at work, and a sense of threat were found to be most important in this respect. These four components of occupational stress were interrelated and constituted a feedback loop. The study confirmed a salutogenic role of self-esteem, contributing to subjective health improvement. Satisfaction with social support had also a positive role, since it reduced the amount of experienced job stress, thus exerting a health-promoting effect. There was a direct negative feedback loop between self-esteem and somatic health problems. Irrespective of that, satisfaction with social support was found to interact with perceived occupational stress in a negative feedback loop. However, neither of these two factors, i.e. self-esteem and social support, had an effect of buffering the impact of occupational stress on health. This suggests that the initial model proposed by House as well as the present author's earlier research findings obtained from a smaller sample should be revised.


2005 ◽  
Vol 874 ◽  
Author(s):  
Richard Weinkamer ◽  
Markus A. Hartmann ◽  
Yves Brechet ◽  
Peter Fratzl

AbstractUsing a stochastic lattice model we have studied the architectural changes of trabecular bone occurring while the structure is remodeled. Our model considers the mechanical feedback loop, which control the remodeling process. A fast algorithm was employed to solve approximately the mechanical problem. A general feature of the model is that a networklike structure emerges, which further coarsens while the bone volume fraction remains unchanged. Decreasing the mechanical response of the system by either lowering the external load or the internal mechano-sensitivity leads not only to a reduction of the bone volume fraction, but results in topological changes of the trabecular bone architecture, where the loss of horizontal trabeculae is the most obvious effect.


2015 ◽  
Vol 665 ◽  
pp. 277-280 ◽  
Author(s):  
Aniello Riccio ◽  
S. Saputo ◽  
A. Sellitto ◽  
A. Raimondo ◽  
R. Ricchiuto

The investigation of fiber-reinforced composite laminates mechanical response under impact loads can be very difficult due to simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damage as fiber and matrix cracking and inter-laminar damage, such as delamination, often take place concurrently, leading to significant reductions in terms of strength and stability for composite structure. In this paper a numerical study is proposed which, by means of non-linear explicit FEM analysis, aims to completely characterize the composite reinforced laminates damage under low velocity impacts. The numerical investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the damage formation and evolution. Five different impact locations with the same impact energy are taken into account to investigate the influence on the onset and growth of damage.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012087
Author(s):  
Peng Hao ◽  
Lin’an Li ◽  
Jianxun Du

Abstract In order to research the impact mechanical response characteristics of the bio-inspired composite sandwich structure, the hemispherical impactor is preloaded with different energy to impact bio-inspired and conventional composite sandwich structure, the stress distribution and dynamic response characteristics of composite sandwich structure under impact load are studied. The results show that the main damage of the upper panel is fiber shear fracture, while crushing fracture for the core, and the main damage of the lower panel is fiber tensile tearing under different impact load. The bio-inspired composite sandwich structure shows better impact resistance in terms of damage depth and maximum impact load under the same impact energy. From the perspective of energy consumption, the bio-inspired structure absorbed more energy than conventional structure under high energy impact.


Sign in / Sign up

Export Citation Format

Share Document