IMPROVEMENT OF MESOPOROSITY OF ACTIVATED CARBONS FROM PET BY NOVEL PRE-TREATMENT FOR STEAM ACTIVATION

Author(s):  
K. NAKAGAWA ◽  
H. TAMON ◽  
T. SUZUKI ◽  
S. NAGANO
2002 ◽  
Vol 2 (5-6) ◽  
pp. 265-270
Author(s):  
R. McCallum ◽  
F. Roddick ◽  
M. Hobday

Water treatment authorities use activated carbon as the best available technology to remove low molecular weight organic compounds from potable water. In Australia, pollutants of concern include secondary metabolites from bacterial and cyanobacterial blooms which are highly odorous and, in some cases, toxic. Of these compounds, 2-methylisoborneol (MIB) is one of the most common and its unpleasant musty earthy odour can be detected at or above approximately 10 ng/L. Difficulties in using activated carbon to target such small organic compounds arise when the water has high concentrations of natural organic matter (NOM), as these compounds also adsorb on activated carbon. The adsorption of NOM on activated carbon increases the cost of using this material in water treatment due to competition with the target organic compounds, reducing the capacity of the activated carbon for the latter. The surface of activated carbon can be tailored during production to provide physical and chemical characteristics that can either aid or hinder the adsorption of particular compounds. One source of activated carbon currently under investigation at RMIT University is brown coal char waste from power stations. This waste, currently disposed of to landfill, is potentially an option for activated carbon production. This material has the advantage that it has already been carbonised at around 500°C in the power generation process. This means that less energy is required to produce activated carbon from power station char compared to coal, making the final product cheaper to produce. Previous work at RMIT has shown that steam activated power station char can remove organic compounds from water. Production of a range of activated carbons from power station char (PSC) was undertaken using different activation methods, including steam activation, steam activation with acid pre-treatment, alkali heat treatment, and Lewis acid heat treatment. The different activation methods produced activated carbons with different pore size distributions, in particular, the acid pre-treatment increased the surface area and porosity significantly compared with steam activation, and the alkali treatment increased the microporosity. Adsorption of MIB on these activated carbons was evaluated to determine the relationship between physical and chemical interactions of the activated carbon and adsorption. Adsorption of MIB on these activated carbons was found to be dependent on the secondary micropore volume. Lewis acid treatment and alkali treatment was not involved in the generation of many of these secondary pores, hence carbons from these treatments did not perform well in adsorption tests. The best adsorption results were achieved with steam activated or acid treated steam activated samples which performed comparably to commercial products. Initial results showed that competition from NOM adsorption was lowest with the PSC activated carbons, allowing greater adsorption of MIB, compared with the commercial activated carbons.


Carbon ◽  
1999 ◽  
Vol 37 (10) ◽  
pp. 1643-1645 ◽  
Author(s):  
H Tamon ◽  
K Nakagawa ◽  
T Suzuki ◽  
S Nagano

2021 ◽  
Vol 13 (4) ◽  
pp. 1970
Author(s):  
Sara Yasipourtehrani ◽  
Vladimir Strezov ◽  
Tao Kan ◽  
Tim Evans

Blast Furnace Slag (BFS) is a by-product of the iron ore processing industry with potential to be used in different industrial applications. In this research, BFS was used to examine its ability for dye removal from wastewater. The efficiency of two types of BFS samples for removal of cationic methylene blue (MB) and acidic methyl orange (MO) dyes was investigated and results found that the optimal conditions for treatment of wastewater were 80 g/L of adsorbent dose and 1 h of treatment time for both dyes. BFS was found to be more effective for removal of the acidic MO dye than the cationic MB dye. Under shorter residence times, the results showed reverse trends with BFS samples removing higher concentrations of MB than MO. The BFS chemistry had additional impacts on the efficiency of dye removal. Higher basicity of BFS had lower dye removal ability for adsorption of acidic dye when applied at smaller concentrations, while for cationic dye when applied at higher concentrations. The results showed that BFS has potential role for pre-treatment of industrial wastewater contaminated with dyes and may contribute to reduced use of more expensive adsorbents, such as activated carbons.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1280
Author(s):  
Vu Duc Canh ◽  
Seiichiro Tabata ◽  
Shun Yamanoi ◽  
Yoichi Onaka ◽  
Toshiyuki Yokoi ◽  
...  

Porous carbons are well-known efficient adsorbents for a variety of organic and inorganic pollutants; however, they have difficulty in virus removal. In this study, novel porous carbons (NPCs) (NPC-A, NPC-B, and NPC-C) derived from rice husks were compared with commercially available activated carbons (ACs) for their ability to remove MS2 bacteriophages (MS2) in a batch experiment. NPC-A was produced by the silica removal process. NPC-B was prepared with an additional steam activation applied to NPC-A. NPC-C was obtained with an additional acid rinse applied to NPC-B. The NPCs (particularly NPC-C) exhibited effective removal of up to 5.3 log10 of MS2, which was greater than that of less than 2.7 log10 obtained by other ACs under 10 g/L during the same contact time (60 min). The pore size distribution of the porous carbon adsorbents was found to influence their virus removal performance. The adsorbents with a larger proportion of pores ranging from 200–4500 nm in diameter were able to achieve higher virus removal rates. Thus, NPCs (particularly NPC-C), which had a larger volume of pores ranging from 200–4500 nm in size, demonstrated the potential for use as efficient adsorbents for removing viruses during water purification.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Daouda Kouotou ◽  
Horace Ngomo Manga ◽  
Abdelaziz Baçaoui ◽  
Abdelrani Yaacoubi ◽  
Joseph Ketcha Mbadcam

In this study, activated carbons were prepared from oil palm shells by physicochemical activation. The methodology of experimental design was used to optimize the preparation conditions. The influences of the impregnation ratio (0.6–3.4) and the activation temperature between 601°C and 799°C on the following three responses: activated carbon yield (R/AC-H3PO4), the iodine adsorption (I2/AC-H3PO4), and the methylene blue adsorption (MB/AC-H3PO4) results were investigated using analysis of variance (ANOVA) to identify the significant parameters. Under the experimental conditions investigated, the activation temperature of 770°C and impregnation ratio of 2/1 leading to the R/AC-H3PO4of 52.10%, theI2/AC-H3PO4of 697.86 mg/g, and the MB/AC-H3PO4of 346.25 mg/g were found to be optimum conditions for producing activated carbon with well compromise of desirability. The two factors had both synergetic and antagonistic effects on the three responses studied. The micrographs of activated carbons examined with scanning electron microscopy revealed that the activated carbons were found to be mainly microporous and mesoporous.


2015 ◽  
Vol 218 ◽  
pp. 55-61 ◽  
Author(s):  
Akshay Jain ◽  
Chaohe Xu ◽  
Sundaramurthy Jayaraman ◽  
Rajasekhar Balasubramanian ◽  
J.Y. Lee ◽  
...  

1997 ◽  
Vol 15 (10) ◽  
pp. 803-814 ◽  
Author(s):  
A.M. Youssef ◽  
M.R. Mostafa ◽  
E.M. Dorgham

Zinc chloride-activated carbons and steam-activated carbons were prepared from Maghara coal. The textural properties were determined from low-temperature nitrogen adsorption. Zinc chloride activation is usually associated with the creation of new micropores while steam activation involves pore widening particularly when the percentage burn-off is high. The adsorption of SO2 on steam-activated carbon is high compared with ZnCl2-activated carbons. Steam activation develops surface basic groups which provide chemisorption sites for SO2. The adsorption of SO2 is enhanced in the presence of O2 and water vapour and involves the formation of sulphuric acid in this case. Sulphur dioxide adsorption is related to the chemistry of the carbon surface rather than to the extent of the surface area of the activated carbon.


2016 ◽  
Vol 16 (2) ◽  
pp. 36-41
Author(s):  
W. K. Buah ◽  
J. R. Dankwah

A study on sorption of heavy metal ions: Lead (Pb2+), Copper (Cu2+) and Cadmium (Cd2+) from mine wastewater by activated carbons prepared from coconut husk was conducted.  The activated carbons were prepared by carbonisation of the husk at 900 ºC pyrolysis temperature, followed by steam activation of the pyrolysis derived char. Activation was also performed at 900 ºC for various durations at steam addition rate of 0.2 mol/h/g in a Gas Fired Static Bed Pyrolysis-Activation Reactor. The derived activated carbons were contacted with mine wastewater containing heavy metal ions to assess their heavy metal ions adsorption potential. The results show that the activated carbons efficiently adsorbed the heavy metal ions from solution, reducing concentrations of  Pb2+, Cu2+ and Cd2+ from 1.56 mg/L, 1.87 mg/L and 0.69 mg/L respectively to below Ghana Environmental Protection Agency (GEPA) standards of  0.10 mg/L, 1.30 mg/L and 0.03 mg/L for Pb2+, Cu2+ and Cd2+ respectively. The significances of this study are that, the conversion of the coconut husk to activated carbons provides a solution to environmental problems associated with dumping of the waste and also provides valuable products capable of reducing the effects of heavy metals in wastewater.  Keywords: Coconut Husk, Activated Carbon, Heavy Metal, Adsorption


Sign in / Sign up

Export Citation Format

Share Document