SILICON:GERMANIUM HETEROJUNCTION BIPOLAR TRANSISTORS: FROM EXPERIMENT TO TECHNOLOGY

1994 ◽  
Vol 05 (03) ◽  
pp. 473-491 ◽  
Author(s):  
B.S. MEYERSON ◽  
D.L. HARAME ◽  
J. STORK ◽  
E. CRABBE ◽  
J. COMFORT ◽  
...  

Recent advances in thin film growth techniques, notably the maturation of low temperature silicon epitaxy, have enabled the routine fabrication of highly controlled dopant and silicon:germanium alloy profiles. These capabilities, combined with refinements in heterojunction bipolar transistor designs, have led to the first integrated circuits in the silicon:germanium materials system. Utilizing a commercial (Leybold-AG) UHVCVD tool for SiGe epitaxy on a standard 8" CMOS line, medium scale integration has been achieved, with the first IC components being SiGe HBT based 1 Ghz, 12 bit, digital to analog converters.

Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


1988 ◽  
Vol 144 ◽  
Author(s):  
Han-Tzong Yuan

ABSTRACTThe status and progress of AlGaAs/GaAs heterojunction bipolar transistor integrated circuits are reviewed. The challenge of fabricating large-scale integrated circuits using heterojunction bipolar transistors is discussed. Specifically, the issues related to low defect epitaxial materials, localized impurity doping techniques, simple and reliable ohmic contacts, and multilevel interconnects are examined.


1996 ◽  
Vol 74 (S1) ◽  
pp. 159-166
Author(s):  
D. C. Ahlgren ◽  
S. J. Jeng ◽  
D. Nguyen-Ngoc ◽  
K. Stein ◽  
D. Sunderland ◽  
...  

This review discusses the fundamentals of SiGe epitaxial base heterojunction bipolar transistor (HBT) technology that have been developed for use in analog and mixed-signal applications in the 1–20 GHz range. The basic principles of operation of the graded base SiGe HBT are reviewed. These principles are then used to explore the design optimization for analog applications. Device results are presented that illustrate some important trade-offs in device design. A discussion of the use of UHV/CVD for the deposition of the epitaxial base profile is followed by an overview of the integrated process. This process, which has been installed on 200 mm wafers in IBM's Advanced Semiconductor Technology Center in Hopewell Junction, N.Y., also includes a full range of support devices. The process has demonstrated SiGe HBT performance, reliability, and yield in a CMOS fabrication with the addition of only one tool for UHV/CVD deposition of the epi-base and, with minimal additional process steps, can be used to fabricate full BiCMOS designs. This paper concludes with a discussion of high-performance circuits fabricated to date, including ECL ring'oscillators, power amplifiers, low-noise amplifiers, voltage-controlled oscillators, and finally a 12-bit DAC that features nearly 3000 SiGe HBT devices demonstrating medium-scale integration.


1984 ◽  
Vol 31 (12) ◽  
pp. 1980-1980
Author(s):  
A.N.M. Masum Choudhury ◽  
K. Tabatabaie-Alavi ◽  
J.C. Vlcek ◽  
H. Kanbe ◽  
C.G. Fonstad

1990 ◽  
Vol 01 (03n04) ◽  
pp. 245-301 ◽  
Author(s):  
M.F. CHANG ◽  
P.M. ASBECK

Recent advances in communication, radar and computational systems demand very high performance electronic circuits. Heterojunction bipolar transistors (HBTs) have the potential of providing a more efficient solution to many key system requirements through intrinsic device advantages than competing technologies. This paper reviews the present status of GaAs and InP-based HBT technologies and their applications to digital, analog, microwave and multifunction circuits. It begins with a brief review of HBT device concepts and critical epitaxial growth parameters. Issues important for device modeling and fabrication technologies are discussed. The paper then highlights the performance and the potential impact of HBT devices and integrated circuits in various application areas. Key prospects for future HBT development are also addressed.


2014 ◽  
Vol 666 ◽  
pp. 59-63
Author(s):  
Maya Lakhdara ◽  
Saϊda Latreche ◽  
Christian Gontrand

—This paper analyse is the impact of cryogenic temperatures for SiGe Heterojunction Bipolar Transistors (HBTs) base, realised in BiCMOS9 0.13μm industrial process. The use of these components in microwaves applications exposed to various temperatures is fundamental aspect to predict in precise way its electric characteristics. This paper investigates the temperature dependence from (170 K to 300 K) of DC, for NPN SiGe heterojunction bipolar transistors (HBTs) and notably modeling high performance Si/SiGe HBT for telecommunication and radar detection (>0.5THz) in low temperature (cryogenic temperature).


MRS Bulletin ◽  
1998 ◽  
Vol 23 (4) ◽  
pp. 60-64 ◽  
Author(s):  
James C. Sturm

Over the past decade or so, research in silicon-based heterostructures has evolved from a few seminal publications on the growth and physical properties of Si1−xGex heteroepitaxial layers to a technology currently entering large-scale commercial production for heterojunction bipolar transistors (HBTs). During this period, extensive work has taken place on the optoelectronic applications of Si/Si1−x Gex such as 1.3–1.55 μam detectors for optical communication, 2–12-μm infrared detectors for two-dimensional (2D) focal plane arrays for night vision and thermal imaging, and infrared emitters for chip-to-chip optical communication as well as waveguiding and modulators. The overall goal of this work has been to merge optoelectronic functionality with the very large-scale-integration and electronic signal processing capabilities of silicon to create a silicon-based “superchip.”


Author(s):  
Konstantin Petrosyants ◽  
Maksim Kozhukhov

The unified Si BT/SiGe HBT SPICE-model is presented, which allows performing SPICE simulation of integrated circuits that considering the radiation effect. The results of measurements and modeling of electrical characteristics of bipolar transistors before and after exposure to various radiation types are presented.


Sign in / Sign up

Export Citation Format

Share Document