GROWTH OF CARBON NANOTUBES ON THE GLASS SUBSTRATE FOR FLAT PANEL DISPLAY APPLICATIONS

2002 ◽  
Vol 16 (06n07) ◽  
pp. 979-982 ◽  
Author(s):  
JAEMYUNG KIM ◽  
KWANGSOO NO

We have grown carbon nanotubes (CNTs) on the soda-lime glass substrates using chemical vapor deposition of C 2 H 2 gas at 550°C. We used electro-plated Ni thin film as a catalyst and screen-printed Ag thick film as a cathode. The turn-on field was about 2.55 V /μ m with an emission current density of 10 μ A / cm 2, and electric field was about 4.0 V /μ m with an emission current density of 3 mA/cm2. Fowler-Nordheim plot shows good linear fit, indicating that the emission current of CNTs follows the Fowler-Nordheim behavior. This process is suitable for mass production of CNT field emission display(CNT-FED), because of its merits; low temperature (≤ 550° C ) process, easiness of CNT patterning, non-vacuum process, large area uniformity.

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1699
Author(s):  
Dipendra Adhikari ◽  
Maxwell M. Junda ◽  
Corey R. Grice ◽  
Sylvain X. Marsillac ◽  
Robert W. Collins ◽  
...  

Nanocrystalline hydrogenated silicon (nc-Si:H) substrate configuration n-i-p solar cells have been fabricated on soda lime glass substrates with active absorber layers prepared by plasma enhanced chemical vapor deposition (PECVD) and radio frequency magnetron sputtering. The cells with nanocrystalline PECVD absorbers and an untextured back reflector serve as a baseline for comparison and have power conversion efficiency near 6%. By comparison, cells with sputtered absorbers achieved efficiencies of about 1%. Simulations of external quantum efficiency (EQE) are compared to experimental EQE to determine a carrier collection probability gradient with depth for the device with the sputtered i-layer absorber. This incomplete collection of carriers generated in the absorber is most pronounced in material near the n/i interface and is attributed to breaking vacuum between deposition of layers for the sputtered absorbers, possible low electronic quality of the nc-Si:H sputtered absorber, and damage at the n/i interface by over-deposition of the sputtered i-layer during device fabrication.


2008 ◽  
Vol 93 (10) ◽  
pp. 103101 ◽  
Author(s):  
Seung Youb Lee ◽  
Won Chel Choi ◽  
Cheolho Jeon ◽  
Chong-Yun Park ◽  
Ji Hoon Yang ◽  
...  

2001 ◽  
Vol 706 ◽  
Author(s):  
Young-Jun Park ◽  
In-Taek Han ◽  
Ha-Jin Kim ◽  
Yun-Sung Woo ◽  
Nae-Sung Lee ◽  
...  

AbstractA direct synthesis of carbon nanotubes (CNTs) on substrates by chemical vapor deposition (CVD) is one of highly probable routes to reach their application to field emission displays. Several stringent requirements are prerequisite for this purpose, including low temperature growth below 600°C to engage glass substrates and large area deposition for practical use. This study carried out synthesis of CNTs by thermal CVD on glass substrates at temperatures as low as 500~550°C. CNTs were grown by thermal decomposition of CO and H2 gases at an atmospheric pressure for different thickness of Invar (an Fe-Ni-Co alloy ) catalytic layers. The growth of CNTs was strongly correlated with preparation of catalytic layers. The diameters and heights of as-grown CNTs increased as the catalytic layers became thicker from 2nm to 30nm. Measurements of the field emission properties of CNTs showed that the threshold electric fields were lowered with increasing thickness of catalytic layers. A uniform electron emission was observed over a large area of 150 × 150mm2, with high emission currents and high brightness.


2000 ◽  
Vol 10 (01) ◽  
pp. 5-11
Author(s):  
YOUNG CHUL CHOI ◽  
YOUNG SOO PARK ◽  
YOUNG HEE LEE ◽  
WON BONG CHOI ◽  
NAE SUNG LEE ◽  
...  

Carbon nanotube (CNT)-based field emission displays (FEDs) have been fabricated using well-aligned nanotubes on substrates in situ grown by thermal chemical vapor deposition (CVD), and paste squeeze and surface rubbing techniques. Although the former seems to be an ultimate approach for CNT-based FED, a large area synthesis and uniform field emission over the entire area is not yet easily accessible. On the other hand, the latter is fully scalable on glass substrates and shows very high luminance of 1800 cd/m2 at 4 V/μm. The degradation of emission currents for single-wall carbon nanotubes was less than 10% in electrical aging tests. Large field-enhancement factors (23,000–46,000) and low turn-on voltages (1.5-3 V/μm) were attributed to well-aligned carbon nanotubes on substrates and a large number density of carbon nanotubes of 5-10 μm-2, which was confirmed by high-resolution scanning electron microscopy.


2008 ◽  
Vol 57 (11) ◽  
pp. 7173
Author(s):  
Wang Xin-Qing ◽  
Li Liang ◽  
Chu Ning-Jie ◽  
Jin Hong-Xiao ◽  
Ge Hong-Liang

2002 ◽  
Vol 750 ◽  
Author(s):  
Mann Yi ◽  
Hyuck Jung ◽  
Woo-Suk Seo ◽  
Jong-Won Park ◽  
Hyun-Tae Chun ◽  
...  

ABSTRACTCarbon nanotubes (CNTs) have been significantly used for the field emitters for display applications. It is necessary to investigate the process variables affecting the screen printing of carbon nanotubes for the fabrication of good-quality field emitter devices with uniformity. Screen printing techniques have some advantages such as the short processing time and lower processing cost. The carbon nanotube pastes for screen printing are normally composed of organic binders, carbon nanotubes, and some additive materials. In this study, the carbon nanotube emitters for field emission displays were fabricated with different processing variables such as paste viscosity, paste composition, screen mesh, etc. The CNT pastes were printed on Cr-coated/Ag-printed soda-lime glass substrates. As a result, the processing variables were optimized for the good screen printing. From the I-V characteristics, the turn-on field of single-walled nanotubes was lower than that of multi-walled nanotubes. The decrease in the mesh number of screen masks resulted in decreasing the turn-on field and increasing the electron emission current due to the higher density and vertical alignment of printed-CNTs.


2008 ◽  
Vol 1081 ◽  
Author(s):  
Qingliang Liao ◽  
Yue Zhang ◽  
Liansheng Xia ◽  
Junjie Qi ◽  
Yunhua Huang ◽  
...  

AbstractA large area carbon nanotube cathode was fabricated by use of a screen printing method. The emission properties of the cathode were investigated in both direct current and pulse mode experiments. In the direct current mode, the cathode has high field enhancement factor and high emission current density. In the double-pulse mode, the emission current density can approach 267 A/cm2 at an applied electric field of 15.4 V/um. Steady intense electron beams were obtained from the cathode. The results proved that the emission mechanism of CNTs at pulse electric field is plasma-induced field emission. The carbon nanotube cathode is suitable for not only field emission display applications but also high-power microwave device applications.


2004 ◽  
Vol 836 ◽  
Author(s):  
Ki-Hyun Kim ◽  
Young-Gab Chun ◽  
Byung-Ok Park ◽  
Kyung-Hoon Yoon

ABSTRACTCIGS nanoparticles for the CIGS absorber layer have been synthesized by low temperature colloidal routes. The CIGS absorber layers for solar cells have been prepared by spray deposition of CIGS nanoparticle precursors (∼20 nm) in glove box under inert atmosphere. An automatic air atomizing nozzle spray system with computer controlled X-Y step motor system was used to spray. The nanoparticle precursor CIGS film was deposited onto molybdenum-coated soda-lime glass substrates (2.5 cm × 5.0 cm) heated to 160°C. The film thickness in the range of 2 μm ± 0.3 μm was attained by spraying of 3 mM colloidal over an area of 12.5 cm2. The coalescence between particles was observed in the CIGS absorber layer under post-treatment of over 550 °C. This is related to the reactive sintering among the nanoparticles to reduce surface energy of the particles. The CuxSe thin film, formed on Mo film by evaporation, improved adhesion between CIGS and Mo layers and enhanced the coalescence of the particles in the CIGS layer. These are closely related to the fluxing of Cu2Se phase which has relatively low melting temperature. The CdS buffer layer was deposited on the CIGS/Mo/soda-lime glass substrate by chemical bath deposition. The CIGS nanoparticles-based absorber layers were characterized by using energy dispersive spectroscopy (EDS), x-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM).


2008 ◽  
Vol 1142 ◽  
Author(s):  
Feng Jin ◽  
Yan Liu ◽  
Scott A Little ◽  
Chris M Day

ABSTRACTWe have created a thermionic cathode structure that consists of a thin tungsten ribbon; carbon nanotubes (CNTs) on the ribbon surface; and a thin layer of low work function barium strontium oxide coating on the CNTs. This oxide coated CNT cathode was designed to combine the benefits from the high field enhancement factor from CNTs and the low work function from the emissive oxide coating. The field emission and thermionic emission properties of the cathode have been characterized. A field enhancement factor of 266 and a work function of 1.9 eV were obtained. At 1221 K, a thermionic emission current density of 1.22A/cm2 in an electric field of 1.1 V/μm was obtained, which is four orders of magnitude greater than the emission current density from the uncoated CNT cathode at the same temperature. The high emission current density at such a modest temperature is among the best ever reported for an oxide cathode.


2005 ◽  
Vol 865 ◽  
Author(s):  
P. D. Paulson ◽  
S. H. Stephens ◽  
W. N. Shafarman

AbstractVariable angle spectroscopic ellipsometry has been used to characterize Cu(InGa)Se2 thin films as a function of relative Ga content and to study the effects of Cu off-stoichiometry. Uniform Cu(InGa)Se2 films were deposited on Mo-coated soda lime glass substrates by elemental evaporation with a wide range of relative Cu and Ga concentrations. Optical constants of Cu(InGa)Se2 were determined over the energy range of 0.75–C4.6 eV for films with 0 ≤ Ga/(In+Ga) ≤ 1 and used to determine electronic transition energies. Further, the changes in the optical constants and electronic transitions as a function of Cu off-stoichiometry were determined in Cu-In-Ga-Se films with Cu atomic concentration varying from 10 to 25 % and Ga/(In+Ga) = 0.3. Films with Cu in the range 16–24 % are expected to contain 2 phases so an effective medium approximation is used to model the data. This enables the relative volume fractions of the two phases, and hence composition, to be determined. Two distinctive features are observed in the optical spectra as the Cu concentration decreases. First, the fundamental bandgaps are shifted to higher energies. Second, the critical point features at higher energies become broader suggesting degradation of the crystalline quality of the material.


Sign in / Sign up

Export Citation Format

Share Document