CHARACTERISTICS OF A YIELD STRESS SCALING FUNCTION FOR ELECTRORHEOLOGICAL FLUIDS

2002 ◽  
Vol 16 (17n18) ◽  
pp. 2636-2642 ◽  
Author(s):  
H. J. CHOI ◽  
J. W. KIM ◽  
M. S. CHO ◽  
C. A. KIM ◽  
M. S. JHON

The electrorheological (ER) fluids exhibit a drastic change in rheological and electrical properties. Among these properties, yield stress is one of the critical evaluation parameters of the performance of ER devices. The published experimental data of yield dependence on the electric field strength and particle volume fraction are inconsistent due to the time dependence of material properties and measuring conditions. In this paper, we present a universal function, descriptive of the normalized yield stress, via scaling of the applied electric field strength. This scaling equation hybridizes both the polarization and conductivity models. Yield stress data for various ER fluids are collapsed onto a single curve for a broad range of electric field strengths, suggesting that the proposed scaling equation is adequate for predicting the ER property. Furthermore, the yield stresses, obtained from two different measuring techniques (static and dynamics methods), were also examined.

2009 ◽  
Vol 87-88 ◽  
pp. 143-148
Author(s):  
Nai Xu ◽  
De Min Jia

Electrorheological (ER) characteristics of ER fluids (ERF) containing bacterial cellulose (BC) particles in silicone oil was investigated as a function of particle water content, DC electric field strength and particle concentration. It was found that the existence of water in BC particles strongly influenced the performance of water-activated ERF based on BC particles. Around 8.8 wt% water, yield stress reached its maximum valve of 1118 Pa after which it decreased with increasing water content. At the same water content, yield stress increased linearly with increasing in either electric field strength or particle concentration. The ERF based on BC particles was introduced into the poly (dimethylsiloxane) (PDMS) gels to prepare electric field sensitive composite gel. Electric fields were applied to these composite gels using flexible electrodes. Compressions of these gels with varying PDMS/ERF ratios were confirmed by the electrode displacement. It was found that 50/50 PDMS/ERF gel exhibited the maximum displacement of 102um at 2 kV/mm electric field.


Author(s):  
Gokce Calis Ismetoglu ◽  
Halil Ibrahim Unal

Electrorheological (ER) fluids generate mechanical responses to applied electric field strength via changing their rheological properties from liquid to solid and vice-versa reversibly. As a result of this, ER fluids can be used in the industrial vibration damping systems. In order to increase applicability of ER fluids, it is necessary to understand electric field induced polarization and ER mechanism of different materials. Therefore, the aim of this study is to illuminate ER and vibration damping properties of polyanthracene (PAT), which is a new material for ER studies. PAT was synthesized from anthracene and characterized by several techniques namely: ATR-FTIR spectroscopy, particle size, SEM image, four-point probe conductivity, and magnetic susceptibility measurements. A series of PAT/silicone oil (SO) dispersions having various concentrations were prepared and subjected to dielectric and ER tests. Then, the colloidal stabilities of 20% PAT/SO and 20% PAT/SO/TritonX systems were determined. Dynamic viscoelastic data obtained by the oscillation tests showed that viscous behavior was dominant under zero electric field, whereas elastic behavior was prevailing under external electric field strength and highlighting the vibration damping characteristics of PAT/SO dispersion. In the creep-recovery measurements, the highest %recovery was recorded to be 62% indicating potential industrial use of PAT/SO dispersion.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1703-1709 ◽  
Author(s):  
JINGZHOU LU ◽  
QINGBIN LI

The work presented in this paper bears on the feasibility and the operative technology of embedding electro-rheological (ER) fluids into cement mortar. We have made a cantilever mortar beam with controllable ER fluids filled in a central crack for the purpose of investigation on the evolutional rule of frequencies under different electric field strength by hammering test. The experimental results indicated that the influence of electric field strength upon the first frequency is more evident than that upon the second one, whereas that upon the third frequency is very little. In addition, the physical mechanism of the impact of the change of voltage on the frequency of smart beam structures embedded with ER fluids was discussed. This research sets up an experimental basis for the application of ER fluids in the domain of structural vibration control.


Author(s):  
Takatsune Narumi ◽  
Hideaki Hoshi ◽  
Tomohiko Muraki ◽  
Tomiichi Hasegawa

In the present study, electro-rheological characteristics of a liquid crystal (8CB) in smectic-A phase were investigated utilizing a parallel-plate type rheometer under a stress control mode. Solid like behaviors of the liquid crystal under DC electric fields were mainly examined. Bingham-like properties were observed and yield stresses measured were affected with the electric field conditions. When the electric field strength was low, the yield stress was almost the same as that obtained under no electric field. Above a threshold of DC electric field strength, the yield stress increased. It was clarified that the increase in the yield stress was caused with the complex structure formed in cooling process from an electro-convection state in nematic phase. Mechanical property changes after deformation of the structure were also examined as changes in dynamic viscoelasticities under condition of very small strain amplitude and the yield stress. The properties were measured before and after the deformation and compared. Moreover, the deformed structure of the liquid crystal was visualized with a polarizing microscope. Since the initial structures formed after the cooling have unevenness, the strength of the structure varied widely. When the small deformation is applied, peculiar changes in the strength were observed, i.e. the G’ measured was increased or decreased after the deformation. Moreover, the values measured after the deformation had reproducibility despite of the scattered initial data. We observed growth of typical optical patterns in the visualization of the structure and it is considered that defects like focal conic domains were generated and developed. After large deformation, the strength of the structure decreased and the deformed structure had almost no elastic properties. The structures were changed to irregular flow structures.


Author(s):  
Ravi S. Prasher ◽  
Jim Shipley ◽  
Suzana Prstic ◽  
Paul Koning ◽  
Jin-Lin Wang

Currently there are no models to predict the thickness or the bondline thickness (BLT) of particle laden polymeric thermal interface materials (TIM) for parameters such as particle volume fraction and pressure. TIMs are used to reduce the thermal resistance. Typically this is achieved by increasing the thermal conductivity of these TIMs by increasing the particle volume fraction, however increasing the particle volume fraction also increases the BLT. Therefore, increasing the particle volume fraction may lead to an increase in the thermal resistance after certain volume fraction. This paper introduces a model for the prediction of the BLT of these particle laden TIMs. Currently thermal conductivity is the only metric for differentiating one TIM formulation from another. The model developed in this paper introduces another metric: the yield stress of these TIMs. Thermal conductivity and the yield stress together constitute the complete set of material parameters needed to define the thermal performance of particle laden TIMs.


2007 ◽  
Vol 353-358 ◽  
pp. 1390-1393
Author(s):  
Bai Feng Luan ◽  
Gao Hui Wu ◽  
Qing Liu ◽  
Niels Hansen ◽  
Ting Quan Lei

An experimental study of microstructure and mechanical properties in the Al2O3 particulate reinforced 6061 Aluminum composites has been used to determine the effect of extrusion and particle volume fraction (20, 26, 30, 40, 50, 60%Vf) in deformed metal matrix composites. The microstructure of Al2O3 /6061Al composite before and after hot extrusion is investigated by TEM and SEM. Results show that dislocation and subgrain generated after hot extrusion as well as the particle distribution of composite become more uniform with extrusion ratio of 10:1. The ultimate strength, yield strength and elongation of the composite also increase after hot extrusion. Dispersion strengthening and subgrain boundary strengthening is discussed and also the effect of precipitate introduced by heat treatment both after casting and after extrusion. The yield stress (0.2% offset) of the composites has been calculated and predicted using a standard dislocation hardening model. Whilst the correlation between this and the measured value of yield stress obtained in previous experimental test is reasonable.


2010 ◽  
Vol 129-131 ◽  
pp. 421-425 ◽  
Author(s):  
Yi Chun Wang ◽  
Xiao Xia Sun ◽  
Xiao Rong Tang ◽  
Fa Cheng Wang

Electrorheological (ER) fluids are new materials with good properties such as dielectric constant, dielectric loss or conductivity, which display remarkable rheological behavior, being able to convert rapidly and repeatedly from a liquid to solid when an electric field is applied or removed. In this study, suspensions of alumina (A) were prepared in silicone oil (SO). The effects of electric field strength and temperature of the suspensions on thermal conductivity were determined. Thermal conductivity measurement in different conditions was carried out via experimental instrument with high-voltage power supply and water heating device to investigate the effects of electric field strength and temperature on ER performance and thermal conductivity. The results show that the thermal conductivity is in accordance with ER properties enhanced by increasing the field strength and decreasing the temperature.


2008 ◽  
Vol 38 (11) ◽  
pp. 1276-1285 ◽  
Author(s):  
Fabien Mahaut ◽  
Samir Mokéddem ◽  
Xavier Chateau ◽  
Nicolas Roussel ◽  
Guillaume Ovarlez

2016 ◽  
Vol 802 ◽  
pp. 611-633 ◽  
Author(s):  
S. Bounoua ◽  
E. Lemaire ◽  
J. Férec ◽  
G. Ausias ◽  
A. Zubarev ◽  
...  

This work is focused on the modelling of the shear and normal stresses in fibre suspensions that are subjected to a simple shear flow in the presence of short-range lubrication forces, van der Waals and electrostatic forces, as well as solid friction forces between fibres. All of these forces are weighed by the contact probability. The theory is developed for attractive fibres with van der Waals interaction dominating over electrostatic repulsion. The model predicts a simple Bingham law for both the shear stress and the first normal stress difference, with the apparent shear and normal yield stresses proportional to the second and the third power of the particle volume fraction respectively. The model is applied to the experimental data of Rakatekar et al. (Adv. Mater., vol. 21, 2009, pp. 874–878) and Natale et al. (AIChE J., vol. 60, 2014, pp. 1476–1487) on suspensions of carbon nanotubes dispersed in a Newtonian epoxy resin. It reproduces well the quadratic dependence of the apparent yield stress on the particle volume fraction $(\unicode[STIX]{x1D70E}_{Y}\propto \unicode[STIX]{x1D719}^{2})$ for average particle aspect ratios of $r=160$ and 1200, while it underpredicts the power-law exponent for $r=80$ (always predicting $\unicode[STIX]{x1D719}^{2}$ behaviour instead of $\unicode[STIX]{x1D719}^{3.2}$).


Materials ◽  
2005 ◽  
Author(s):  
Datchanee Chotpattananont ◽  
Anuvat Sirivat

Electrorheological (ER) fluids are typically composed of polarizable particles dispersed in a non-conducting fluid. Upon the application of an electric field, chain-like or fibrillar aggregates of the suspended particles are oriented along the direction of the electric field, thereby inducing viscoelasticity and a drastic increase in viscosity. In our study, Poly(3-thiophene acetic acid), PTAA, has been developed for using as ER material. The rheological properties of this PTAA suspension upon the application of electric field were investigated under various deformations; oscillatory shear flow, steady shear, and creep. We found that PTAA based ER fluid exhibited viscoelastic behavior and showed the excellent responses under an applied electric field. Moreover, the ER response of this PTAA fluid was amplified with increases in electric field strength, particle concentration, and particle conductivity. Under the oscillatory shear, the dynamic moduli, G′ and G″, increased dramatically by 10 orders of magnitude, when the field strength was increased to 2 kV/mm. The suspensions exhibited a transition from fluid-like to solid-like behavior as the field strength increased. While under steady shear flow, the yield stress increased with electric field strength, E, and particle volume fraction, φ, according to a scaling law of the form, τy α Eαφγ. Furthermore, the creep curves of this ER fluid consisted of both elastic and viscous responses and this fluid exhibits partially elastic recovery after the removal of applied stress. The creep properties strongly depended on the magnitude of an applied stress.


Sign in / Sign up

Export Citation Format

Share Document