EFFECTS OF Al, Ga-DOPING ON TRANSPARENT CONDUCTING PROPERTIES OF AMORPHOUS ZnO-SnO2 FILMS

2006 ◽  
Vol 20 (25n27) ◽  
pp. 3902-3907 ◽  
Author(s):  
TOSHIHIRO MORIGA ◽  
YUSUKE NISHIMURA ◽  
HIROSHI SUKETA ◽  
KEI-ICHIRO MURAI ◽  
KAZUHIRO NOGAMI ◽  
...  

ZnO SnO 2 thin films were deposited on glass substrates (Corning#1737) by DC magnetron sputtering. In this works, we examined a doping effect on a ZnO target on transparent conducting properties. ZnO:Al (4wt%), and ZnO:Ga (6wt%) targets were used for a dopant-free ZnO target. Substrate temperature was held at 250°C. The current ratio δ was defined as IZn/IZ + ISn ( ZnO target current divided by the sum of ZnO and SnO 2 target currents). Compositions of as-deposited films were changed with the current ratio δ. In the ZnO-SnO 2 system, amorphous transparent films appeared over the range of 0.33≤δ≤0.73. On the other hand, in the ZnO:Al (4 wt %)- SnO 2 and ZnO:Ga (6 wt %)- SnO 2 systems, they appeared over the range of 0.20≤δ≤0.80 and 0.33≤δ≤0.80, ≤δ≤ respectively. The minimum resistivity of amorphous films was about 3.0×10-2 Ω cm for all the systems. Al , Ga doping effect on film resistivity was not clear very much. But optical transparencies were 80-90% in visible region, 10% higher than those of ZnO-SnO 2 system at average. Optical band gap for the films with the same current ratio δ also was enhanced by the Al , Ga doping.

2010 ◽  
Vol 663-665 ◽  
pp. 572-575 ◽  
Author(s):  
Han Fa Liu ◽  
Hua Fu Zhang ◽  
Ai Ping Zhou

Ti-Ga co-doped ZnO thin films (TGZO) have been successfully prepared on glass substrates by DC magnetron sputtering at room temperature. The X-ray diffraction (XRD) patterns show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The distance between target and substrate was varied from 41 to 75 mm. The crystallinity increases obviously and the electrical resistivity decreases when the distance between target and substrate decreases from 75 to 46 mm. However, as the distance decreases further, the electrical resistivity increases. It is obtained that the lowest resistivity is 2.0610-4cm when the distance between target and substrate is 46 mm. In the visible region, the TGZO films show a high average transmittance of above 90 %.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Sin-Liang Ou ◽  
Feng-Min Lai ◽  
Lun-Wei Yuan ◽  
Da-Long Cheng ◽  
Kuo-Sheng Kao

The off-axis sputtering technique was used to deposit Al-doped ZnO (AZO) films on glass substrates at room temperature. For the illustration of the sample position in the sputtering chamber, the value ofR/ris introduced. Here,ris the radius of AZO target and R is the distance between the sample and the center of substrate holder. A systematic study for the effect of deposition parameters on structural, optical, and electrical properties of AZO films has been investigated in detail. As the sample position ofR/ris fixed at 1.8, it is found that the as-deposited AZO film has relatively low resistivity of 2.67 × 10−3 Ω-cm and high transmittance above 80% in the visible region. Additionally, after rapid thermal annealing (RTA) at 600°C with N2atmosphere, the resistivity of this AZO film can be further reduced to 1.19 × 10−3 Ω-cm. This indicates the AZO films prepared by off-axis magnetron sputtering and treated via the appropriate RTA process have great potential in optoelectronic applications.


1996 ◽  
Vol 426 ◽  
Author(s):  
T. J. Coutts ◽  
X. Wu ◽  
W. P. Mulligan

AbstractWe are examining various spinel-structured thin films (e.g., Cd2SnO4, Zn2SnO4) to develop higher-quality transparent conducting oxides (TCO) than more conventional materials such as indium tin oxide. Here, we report on cadmium indate (CdIn2O4, CIO), which is another member of this family. Thin films of CIO were deposited by radio-frequency (RF) magnetron sputtering, from an oxide target, onto borosilicate glass substrates. The variables included the substrate temperature, sputtering gas composition, and pressure. Film properties were measured before and after heat treatment. Characterization involved Hall effect measurements, optical and infrared spectrophotometry, X-ray diffraction, and atomic-force microscopy. Film resistivities as low as 2.3x10-4Ω cm were achieved for a film thickness of 0.55 μm. The transmittance was 90% in the visible region of the spectrum, without correction for substrate losses and without an anti-reflection coating. The plasma resonance occurred at longer wavelengths than for other materials and this, with a bandgap of approximately 3.1 eV, presents a wide window for optical transmittance. The highest mobility was 54 cm2 V-s-1 and the highest carrier concentration was 7.5x1020 cm-3.


2005 ◽  
Vol 905 ◽  
Author(s):  
Cleva Ow-Yang ◽  
Hyo-Yong Yeom ◽  
Burag Yaglioglu ◽  
David C. Paine

AbstractAmorphous ZITO films were deposited by dc magnetron sputtering onto glass substrates from ceramic oxide targets containing Zn:In:Sn cation ratios of 1:2:1 and 1:2:1.5. The microstructure, carrier density, mobility, and resistivity of as-deposited and annealed samples were evaluated using x-ray diffraction and Hall effect measurements. The as-deposited films were amorphous and remained so after annealing at 200°C in air for up to five hours. Transmissivity of the films exceeded 80% in the visible spectral region. The minimum resistivity value (7.6×10−4 Ω-cm) was obtained from thin films deposited using the 1:2:1 composition target and a substrate temperature of 300°C.


2010 ◽  
Vol 139-141 ◽  
pp. 149-152 ◽  
Author(s):  
Huda Abdullah ◽  
Nor Habibi Saadah ◽  
Sahbudin Shaari ◽  
Andanastuti Muchtar

Zinc sulfide thin films were deposited on optical glass substrates by using chemical bath deposition (CBD) technique that contain solutions of thiourea, zinc acetate, ammonia and sodium citrate. The deposition time were varied from 18 hours to 39 hours. SEM, XRD, and UV-Vis-NIR were used to characterize the sample which shows that the films are thicker and the grains sizes are bigger as the deposition time increases. X-ray diffraction (XRD) pattern prove that ZnS thin films are in disordered since it does not revealing any peaks and the surface of ZnS thin films are amorphous. UV-Vis spectra showed that the deposited ZnS thin films have more than 100% transmittance in the visible region and direct band gap of deposited films are in range of 2.45 eV to 3.53 eV. Time increasing of deposition will slightly decrease the transmittance of the film.


2012 ◽  
Vol 1432 ◽  
Author(s):  
Hantsun Chung ◽  
Jian-Zhang Chen ◽  
I-Chun Cheng

ABSTRACTMgZnO becomes amorphous or short-range-ordered with the addition of hafnium oxide. The films are rf-sputter deposited onto glass substrates (Eagle 2000, Corning Inc.) from Mg0.05HfxZn0.95-xO targets (x=0, 0.025, 0.05, 0.075, 0.1) in pure Ar ambient at room temperature. The sputtered Mg0.05Zn0.95O exhibits strong (002) preferred orientation with XRD peak located at 2θ=34.16o. The XRD peak intensity is also greatly reduced, indicating the material amorphorization proceeds with the addition of Hf. The grain size, estimated from the full-width-at-half-maximum (FWHM) of the (002) XRD peak, decreases from 24.1 to 3.3 nm as the Hf content x increases from 0 to 0.025 in Mg0.05HfxZn0.95-xO. No sharp XRD peaks are detected in the as-sputtered films when more than 5.0 at.% Hf are added into the materials. The films remain in amorphous or short-range-ordered states after annealing at 600 oC for 30 mins. All Mg0.05HfxZn0.95-xO films (100 nm in thickness) are highly transparent (> 80 %) in the visible region from 400 to 800 nm and have sharp absorption edges in the UV region. The tauc bandgap ΔE (eV), as a function of hafnium composition x, is fitted as ΔE=3.336+6.08x for room temperature as-deposited films, and ΔE=3.302+2.60x for films after 30 min 600 oC annealing. The annealing process decreases the bandgap shift caused by the incorporation of Hf in the materials.


2010 ◽  
Vol 663-665 ◽  
pp. 1045-1048
Author(s):  
Han Fa Liu ◽  
Chang Kun Yuan

Transparent conducting Ti-Al co-doped zinc oxide films (TGZO) with high transparency and relatively low resistivity have been successfully prepared on water-cooled glass substrate by DC magnetron sputtering at room temperature. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The Ar sputtering pressure was varied from 1.5 to 13 Pa. The electrical resistivity decreases when the sputtering pressure increases from 1.5 to 7.5 Pa. The electrical resistivity increases when the sputtering pressure increases from 7.5 to 13 Pa. When the sputtering pressure is 7.5 Pa, it is obtained that the lowest resistivity is 2.18×10-4Ω⋅cm. In the visible region, all the deposited films show a high average transmittance of above 92 %.


2003 ◽  
Vol 763 ◽  
Author(s):  
K. Matsubara ◽  
H. Tampo ◽  
A. Yamada ◽  
P. Fons ◽  
K. Iwata ◽  
...  

AbstractLow resistivity and transparent Al doped ZnMgO films were deposited on glass substrates by a pulsed laser deposition system. For up to 32 atm% of Mg content, segregation of a MgO phase was not observed. The bandgap of these films could be widened to about 4 eV with increasing Mg content. The relation between bandgap and resistivity was found to be a trade-off; i.e. the larger the bandgap, the higher the resistivity. The maximum bandgap among films with an electrical resistivity of less than 10-3 Ω cm was 3.94 eV. The average optical transmittance of these films was more than 90 % for wavelengths λ between 400 and 1100 nm. The transmittance around λ = 330 nm was still 50 %.


2015 ◽  
Vol 3 (22) ◽  
pp. 5859-5868 ◽  
Author(s):  
Seyul Kim ◽  
So Yeon Kim ◽  
Moon Hyun Chung ◽  
Jeonghun Kim ◽  
Jung Hyun Kim

An AgNW/PEDOT:PSS coated, transparent, conducting, roll film (460 mm in width × 20 m in length) with good electrical and optical properties was produced using the roll-to-roll slot-die coating method.


2021 ◽  
Author(s):  
Emrah SARICA

Abstract In this work undoped and Cu doped SnS film at 4% and 8% were deposited onto glass substrates by spray pyrolysis technique in order to investigate the effect of Cu doping on their physical properties. Surface investigations showed that Cu doping reduced the surface roughness of SnS films from 36.5 nm to 8.8 nm. XRD studies revealed that all films have recently solved large cubic phase of SnS (p-SnS) with a- lattice of 11.53 Å and Cu doping led to reduction in crystallite size from 229 Å to 198 Å. Additionally, all deposited films were found to be under compressive strain. Optical band gaps of SnS:Cu varied in the range of 1.83 eV-1.90 eV. Hall-effect measurements exhibited that all film have p-type conductivity with low hole concentration (~10 11 -10 12 cm -3 ) and high electrical resistivity (~10 4 -10 5 Ωcm).


Sign in / Sign up

Export Citation Format

Share Document