STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF Pr1-xBaxMnO3(x=0.33–0.80)

2007 ◽  
Vol 21 (15) ◽  
pp. 2647-2656 ◽  
Author(s):  
NEERAJ PANWAR ◽  
S. K. AGARWAL ◽  
G. L. BHALLA ◽  
D. KAUR ◽  
D. K. PANDYA

We report here the electrical resistivity, ac susceptibility, low field magneto-resistance (LFMR) and structural parameters of the Pr 1-x Ba x MnO 3(x= 0.33–0.80) system. Samples with 33% and 40% Ba -content exhibit two clear transitions in their resistivity-temperature behavior while signatures of higher temperature transition are also seen in the 50% Ba sample. The higher temperature transition (insulator-metal, Tp1), like in other CMR materials, results due to competition between the double exchange and super exchange mechanisms. The lower temperature broad hump (Tp2) in resistivity reflects the strain effect at the grain boundaries due to the ionic radii mismatch between Pr +3 and Ba +2. The low field magneto-resistance (at 0.15T) also corroborates the above results as MR peaks near Tp1 and increases further at lower temperatures, reflecting the contribution from the grain boundaries. Susceptibility measurements show the Curie transition (Tc) to be near Tp1 of the ρ-T data. Results are found to be consistent with the (NdBa) MnO 3 and (LaBa) MnO 3 systems. Resistivity data on the Pr 0.67 Sr 0.33 MnO 3 system, where the lower temperature transition at Tp2 is not seen due to the smaller ionic size difference of ( Pr +3– Sr +2) compared to ( Pr +3– Ba +2), also substantiate these results. The observed resistivity upturn at low temperatures is considered in terms of the ensuing localization of carriers due to the varying degree of ionic size mismatch in these systems.

2009 ◽  
Vol 23 (06n07) ◽  
pp. 855-862 ◽  
Author(s):  
FEIYUE MA ◽  
ZHIYI LIU

The microstructural evolution in an Al - Cu - Mg - Ag alloy with trace Zr addition during homogenization treatment was characterized by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). It was shown that the low-melting-point phase segregating toward grain boundaries is Al 2 Cu , with a melting point of 523.52°C. A two-step homogenization process was employed to optimize the microstructure of the as-cast alloy, during which the alloy was first homogenized at a lower temperature, then at a higher temperature. After homogenized at 420°C for 6 h, Al 3 Zr particles were finely formed in the matrix. After that, when the alloy was homogenized at an elevated temperature for a longer time, i.e., 515°C for 24 h, most of the precipates at the grain boundaries were removed. Furthermore, the dispersive Al 3 Zr precipitates were retained, without coarsening greatly in the final homogenization step. A kinetics model is employed to predict the optimal homogenization time at a given temperature theoretically, and it confirms the result in present study, which is 420°C/6h+515°C/24h.


1988 ◽  
Vol 3 (6) ◽  
pp. 1378-1384 ◽  
Author(s):  
R. A. Outlaw ◽  
S. N. Sankaran ◽  
G. B. Hoflund ◽  
M. R. Davidson

The permeation of oxygen through high-purity, large-grain Ag membranes has been studied over the temperature range of 400–800 °C. The permeability was found to be linear and repeatable, but the magnitude was 3.2 times smaller than that determined by past research. This factor may be due to negligible grain boundary diffusion that exists in this work. Auger electron spectroscopy (AES) does, however, suggest the importance of grain boundaries since intragranular oxygen was virtually undetectable and since AES line scans show substantial oxygen signals around the grain boundaries. The diffusivity measurements were found to exhibit two distinct linear regions, one above and one below a critical temperature of 630 °C. The high-temperature data have an activation energy (11.1 kcal mol−1) similar to that reported by others, but the low-temperature data have a comparatively larger activation energy (15.3 kcal mol−1). Vacuum desorption of the oxygen-saturated Ag was found to occur at the critical temperature of 630 °C, which is consistent with the increased mobility of oxygen atoms in the higher temperature regime. The higher activation energy observed in the lower temperature regime is probably due to the higher efficiency of traps.


Author(s):  
Yasujiro Murata ◽  
Shih-Ching Chuang ◽  
Fumiyuki Tanabe ◽  
Michihisa Murata ◽  
Koichi Komatsu

We present our study on the recognition of hydrogen isotopes by an open-cage fullerene through determination of binding affinity of isotopes H 2 /HD/D 2 with the open-cage fullerene and comparison of their relative molecular sizes through kinetic-isotope-release experiments. We took advantage of isotope H 2 /D 2 exchange that generated an equilibrium mixture of H 2 /HD/D 2 in a stainless steel autoclave to conduct high-pressure hydrogen insertion into an open-cage fullerene. The equilibrium constants of three isotopes with the open-cage fullerene were determined at various pressures and temperatures. Our results show a higher equilibrium constant for HD into open-cage fullerene than the other two isotopomers, which is consistent with its dipolar nature. D 2 molecule generally binds stronger than H 2 because of its heavier mass; however, the affinity for H 2 becomes larger than D 2 at lower temperature, when size effect becomes dominant. We further investigated the kinetics of H 2 /HD/D 2 release from open-cage fullerene, proving their relative escaping rates. D 2 was found to be the smallest and H 2 the largest molecule. This notion has not only supported the observed inversion of relative binding affinities between H 2 and D 2 , but also demonstrated that comparison of size difference of single molecules through non-convalent kinetic-isotope effect was applicable.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 407 ◽  
Author(s):  
Mia Marchini ◽  
Alessandra Marti ◽  
Claudia Folli ◽  
Barbara Prandi ◽  
Tommaso Ganino ◽  
...  

The nutritional and physicochemical properties of sorghum proteins and starch make the use of this cereal for food production challenging. Sprouting is a cost-effective technology to improve the nutritional and functional profile of grains. Two drying treatments were used after sorghum sprouting to investigate whether the drying phase could improve the protein and starch functionalities. Results showed that the drying treatment at lower temperature/longer time (40 °C for 12 h) extended the enzymatic activity that started during sprouting compared to the one performed at higher temperature/shorter time (50 °C for 6 h). An increased protein hydrolysis and water- and oil-holding capacity were found in the flour obtained by the former treatment. Higher protein matrix hydrolysis caused high exposure of starch to enzymes, thus increasing its digestibility, while worsening the technological functionality. Overall, modulating drying conditions could represent a further way, in addition to sprouting, to improve sorghum flour’s nutritional profile.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Baochun Zhao ◽  
Tan Zhao ◽  
Guiyan Li ◽  
Qiang Lu

Double compression tests were performed on a Gleeble-3800 thermomechanical simulator to study the softening behaviors of deformed austenite in a V-N microalloyed steel. The static recrystallization volume fractions were calculated by stress offset method, and the kinetic model of static recrystallization was constructed. The effects of temperature, strain, and time interval on the softening behaviors were analyzed, and the interactions between precipitation and recrystallization were discussed. The results show that the softening behaviors of the deformed austenite at lower temperature or higher temperature are markedly different. At the temperature of 850°C or 800°C, pinning effects of the precipitates play the main role, and the recrystallization process is inhibited, which leads to the formation of plateaus in the softening curves. An increase in strain promotes the precipitation and recrystallization processes while reduces the inhibition effect of precipitation on recrystallization as well.


2003 ◽  
Vol 17 (01) ◽  
pp. 19-24 ◽  
Author(s):  
K. PADMAVATHI ◽  
V. RAJAKUMARI ◽  
M. VITHAL ◽  
V. PRASD ◽  
S. V. SUBRAMANYAM ◽  
...  

A series of colossal magneto resistance materials having compositional formula Re 0.67 Sr 0.33 MnO 3 (Re = Nd, Gd, … etc.) were prepared by the sol-gel method, using Ethylene glycol as a gelating reagent. The materials were characterized by the powder X-ray diffraction technique and are found to be single phase with orthorhombic structure. The particle size of all the materials were calculated using the well known Shearer formula and are found to be in the range of 20–45 nm. In order to determine the transition temperature (T c ), the DC electrical resistivity measurements were also carried out over a temperature range 80–300 K using the four probe method and it has been observed that the T c values are found to increase with increasing ionic size. Finally the magneto resistance measurements were also undertaken in the temperature range 80–300 K and it has been found that the MR values of these materials are better when compared with those prepared by the solid state reaction method.


1999 ◽  
Vol 578 ◽  
Author(s):  
R. Janisch ◽  
T. Ochs ◽  
A. Merkle ◽  
C. Elsässer

AbstractThe segregation of interstitial impurities to symmetrical tilt grain boundaries (STGB) in bodycentered cubic transition metals is studied by means of ab-initio electronic-structure calculations based on the local density functional theory (LDFT). Segregation energies as well as changes in atomic and electronic structures at the ΣE5 (310) [001] STGB in Mo caused by segregated interstitial C atoms are investigated. The results are compared to LDFT data obtained previously for the pure Σ5 (310) [001] STGB in Mo. Energetic stabilities and structural parameters calculated ab initio for several crystalline Molybdenum Carbide phases with cubic, tetragonal or hexagonal symmetries and different compositions, MoCx, are reported and compared to recent high-resolution transmission electron microscopy (HRTEM) observations of MoCx, intergranular films and precipitates formed by C segregation to a Σ5 (310) [001] STGB in a Mo bicrystal.


2011 ◽  
Vol 686 ◽  
pp. 120-124
Author(s):  
Jin Ping Fan ◽  
She Bin Wang ◽  
Bing She Xu

The effects of Sr addition on the mechanical properties and microstructure of Mg-6Al mag- nesium alloy both at 25 °C and at 175 °C were investigated by means of OM, SEM and EDS and XRD. Upon the Sr addition of 2%, the tensile strength was increased by 7.2% to 184.4MPa at 25 °C, while it was increased by 30% to 155.4MPa at 175 °C. The strengthening mechanism of Mg-6Al-xSr at lower temperature (25 °C) was different from that at higher temperature (175°C). The results show that the addition of strontium effectively improved the microstructure and mechanical properties of magnesium alloy.


2001 ◽  
Author(s):  
Mark A. Iadicola ◽  
John A. Shaw

Abstract Experiments are presented of the response of pseudoelastic NiTi wires subjected to displacement controlled cycles. A custom built thermo-mechanical testing apparatus is used to control the background temperature field of the wire specimen while allowing the evolution of transformation fronts to be tracked by full field infrared imaging. Two experiments under similar end-displacement histories, but at temperatures ≈8°C apart, are shown to give remarkably different cyclic responses. The mechanical response for the lower temperature experiment continued to soften but retained its shape through 43 partial transformation cycles, and the pattern of transformation fronts seemed to reach a steady state. The response for the higher temperature experiment showed a change in shape of the mechanical response and distinct changes in transformation front patterns over 31 partial transformation cycles.


2000 ◽  
Author(s):  
Y. Cao ◽  
J. Ling ◽  
R. Rivir ◽  
C. MacArthur

Abstract Radially rotating heat pipes have been proposed for cooling gas turbine disks working at high temperatures. A disk incorporating the heat pipe would have an enhanced thermal dissipation capacity and a much lower temperature at the disk rim and dovetail surface. In this paper, extensive numerical simulations have been made for heat-pipe-cooled disks. Thermal performances are compared for the disks with and without incorporating the heat pipe at different heating and cooling conditions. The numerical results presented in this paper indicate that radially rotating heat pipes can significantly reduce the maximum and average temperatures at the disk rim and dovetail surface under a high heat flux working condition. In general, the maximum and average temperatures at the disk rim and dovetail surface could be reduced by above 250 and 150 degrees, respectively, compared to those of the disk without the heat pipe. As a result, a disk incorporating radially rotating heat pipes could alleviate temperature-related problems and allow a gas turbine to work at a much higher temperature.


Sign in / Sign up

Export Citation Format

Share Document