Consequences of Fourier’s and Fick’s laws in bioconvective couple stress nanofluid flow configured by an inclined stretchable cylinder

2021 ◽  
Vol 35 (17) ◽  
pp. 2150176
Author(s):  
Hassan Waqas ◽  
Taseer Muhammad ◽  
Sajjad Hussain ◽  
Sumeira Yasmin ◽  
Ghulam Rasool

The main benefits of submerging tiny-solid particles with the host fluid are to enhance the capability of storing heat, heat exchanger and interaction between the nanomaterials. The objective of this paper is to investigate the steady flow of bio-convective couple stress nanofluid across an inclined stretching cylinder with activation energy, motile microorganisms and nonlinear thermal radiation. The variable temperature conductivity and diffusivity impacts are considered. The Cattaneo–Christov double diffusion theory is also accounted in this model. The governing primary equations are reduced into a coupled system of ODEs by adopting appropriate similarity transformation. The resulting system is integrated numerically utilizing bvp4c tool via MATLAB software. The physical properties of concerned parameters against subjective profiles are examined through tabular and pictorial outline and then discussed in bit detail. It is shown that the velocity field reduces with growing estimations of Reynolds number and buoyancy ratio parameter. It is analyzed that thermal distribution decreases with improving amount of thermal relaxation parameter. Furthermore, concentration of nanoparticles is enhanced for larger amount of thermophoresis parameter. The microorganism field is up surged with enlarging amount of curvature and couple stress fluid parameters.

2018 ◽  
Vol 73 (7) ◽  
pp. 629-637
Author(s):  
M. Devakar ◽  
Ankush Raje ◽  
Shubham Hande

AbstractThe aim of this article is to study the unsteady flow of immiscible couple stress fluid sandwiched between Newtonian fluids through a horizontal channel. The fluids and plates are initially at rest. At an instant of time, a constant pressure gradient is applied along the horizontal direction to generate the flow. The time-dependent partial differential equations are solved numerically using the finite difference method. The continuity of velocities and shear stresses at the fluid-fluid interfaces has been considered. The obtained results are displayed through graphs and are discussed for various fluid parameters pertaining the flow. The volume flow rate is also obtained numerically for diverse fluid parameters and is presented through a table. It is noticed that fluid velocities increased with time and reached a steady state after a certain time level. Also, the presence of couple stresses reduced the fluid velocities. Volume flow rate increased with Reynolds number and is reduced by increase of ratio of viscosities.


Author(s):  
K. Gangadhar ◽  
P. Manasa Seshakumari ◽  
M. Venkata Subba Rao ◽  
Ali J. Chamkha

In the present study, the physical features of the bioconvective MHD flow of a couple stress fluid over an upper horizontal surface (i.e. surface shaped like a submarine or any ( uhsp) aerodynamical automobile) is analysed by considering radiation and viscous dissipation effects. In the fluid-saturated domain flow is induced due to the reaction of catalytic surface, double diffusion and stretching fluid layers. In fact, couple stress fluid is electrically conducted because non-uniform magnetic field is imposed. With the assistance of appropriate similarity transformations governing equations of the study are reduced to set of ordinary differential equations. Thereafter, built-in MATLAB solver bvp4c is implemented to solve the system numerically. By means of graphs and tables variations of the velocity, temperature, concentration, friction factor, local heat and mass transfer rates are observed thoroughly by varying the flow controlling parameters. From this analysis, main observations are, for rising values of couple stress and magnetic parameter velocity is decline, whereas temperature rises for the same parameters and increase in the thermal boundary layer is noted for the Brinkman number, whereas reverse trend is noted in the concentration boundary layer. Finally, comparison is done and a good correlation is identified between the present analysis and perversely recorded analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Umar Nazir ◽  
Muhammad Sohail ◽  
Umair Ali ◽  
El-Sayed M. Sherif ◽  
Choonkil Park ◽  
...  

AbstractStretched flows have numerous applications in different industrial, biomedical and engineering processes. Current research is conducted to examine the flow phenomenon of Prandtl fluid model over a moveable surface. The phenomenon of mass and thermal transportation is based on generalized theory of Cattaneo–Christov which considers the involvement of relaxation times. In addition to these, variable characteristics of thermal conductivity and diffusion coefficient are considered as a function of temperature. The physical problem in Cartesian coordinate system is modeled via boundary layer theory which yields a coupled system of partial differential equations. Group scaling transportation is applied to model these PDEs system. The converted equations have been approximated via optimal homotopic scheme. The efficiency and validity of used approach has been shown by computing the error analysis and establishing a comparative study. It is noted that the enhancement in magnetic parameter plays a controlling role for velocity field and it augment the concentration and temperature fields. Furthermore, increase in thermal relaxation parameter and Prandtl number maintains the fluid temperature.


Author(s):  
P. V. Satya Narayana ◽  
Tarakaramu Nainaru ◽  
G. Sarojamma ◽  
Isaac Lare Animasaun

Abstract Little is known on the three-dimensional flow of couple stress Casson fluid conveying nanoparticles when the significance of Lorentz force, chaotic gesture of those minute particles and thermophoresis are significant. The intent of this investigation is to focus on the flow of such fluid along a horizontal surface due to dual stretching and internal heating. The dimensional nonlinear equations are reduced into a system of coupled nonlinear ODEs employing scaling analysis and later they are solved numerically. The results are discussed graphically for various emerged physical parameters through different plots. The results in the absence of stretching ratio factor indicate that the heat absorption parameter and Prandtl number accelerate the heat transfer rate. The temperature of the non- Newtonian couple stress fluid is found to be bigger than that of viscous case. It may be suggested that Casson couple stress nanofluid can be substituted for the corresponding viscous fluid in industrial applications for greater heat transfer. The outcomes are closely matched with the studies available in the literature as a limiting case.


2019 ◽  
Vol 24 (1) ◽  
pp. 31
Author(s):  
Nazish Shahid

An investigation of how the velocity of elasto-viscous fluid past an infinite plate, with slip and variable temperature, is influenced by combined thermal-radiative diffusion effects has been carried out. The study of dynamics of a flow model leads to the generation of characteristic fluid parameters ( G r , G m , M, F, S c and P r ). The interaction of these parameters with elasto-viscous parameter K ′ is probed to describe how certain parametric range and conditions could be pre-decided to enhance the flow speed past a channel. In particular, the flow dynamics’ alteration in correspondence to the slip parameter’s choice, along with temperature provision to the boundary in temporal pattern, is determined through uniquely calculated exact expressions of velocity, temperature and mass concentration of the fluid. The complex multi-parametric model has been analytically solved using the Laplace and Inverse Laplace transform. Through study of calculated exact expressions, an identification of variables, adversely (M, F, S c and P r ) and favourably ( G r and G m ) affecting the flow speed and temperature has been made. The accuracy of our results have also been tested by computing matching numerical solutions and by graphical reasoning. The verification of existing results of Newtonian fluid with varying boundary condition of velocity and temperature has also been completed, affirming the veracity of present results.


2017 ◽  
Vol 14 (1) ◽  
pp. 39-46 ◽  
Author(s):  
K. Maruthi Prasad ◽  
S. Thulluri ◽  
M. V. Phanikumari

The effects of an overlapping stenosis on blood flow characteristics in an artery have been studied. Blood has been represented by a couple stress fluid. The flow equations have been linearised and the expressions for pressure drop, resistance to the flow and wall shear stress have been derived. The results are shown graphically. It is observed that the resistance to the flow, pressure drop and wall shear stress increases with height and length of the stenosis. And it is noticed that the resistance to the flow and pressure drop decreases with couple stress fluid parameters. But wall shear stress increases with couple stress fluid parameters.


Author(s):  
Sean M. Babiniec ◽  
James E. Miller ◽  
Andrea Ambrosini ◽  
Ellen Stechel ◽  
Eric N. Coker ◽  
...  

In an effort to increase thermal energy storage densities and turbine inlet temperatures in concentrating solar power (CSP) systems, focus on energy storage media has shifted from molten salts to solid particles. These solid particles are stable at temperatures far greater than that of molten salts, allowing the use of efficient high-temperature turbines in the power cycle. Furthermore, many of the solid particles under development store heat via reversible chemical reactions (thermochemical energy storage, TCES) in addition to the heat they store as sensible energy. The heat-storing reaction is often the thermal reduction of a metal oxide. If coupled to an Air-Brayton system, wherein air is used as the turbine working fluid, the subsequent extraction of both reaction and sensible heat, as well as the transfer of heat to the working fluid, can be accomplished in a direct-contact, counter-flow reoxidation reactor. However, there are several design challenges unique to such a reactor, such as maintaining requisite residence times for reactions to occur, particle conveying and mitigation of entrainment, and the balance of kinetics and heat transfer rates to achieve reactor outlet temperatures in excess of 1200 °C. In this paper, insights to addressing these challenges are offered, and design and operational tradeoffs that arise in this highly-coupled system are introduced and discussed.


2016 ◽  
Vol 5 (4) ◽  
Author(s):  
K. Kaladhar ◽  
D. Srinivasacharya

AbstractThe chemical reaction, Soret and Dufour effects on steady flow of a couple stress fluid between two rotating disks are studied. The lower disc is rotating with angular velocity


Sign in / Sign up

Export Citation Format

Share Document