Nonlinear Field Theoretical Approaches to the Electron Density Amplitude Equation in Many-Electron Atoms and Molecules

1998 ◽  
Vol 12 (16n17) ◽  
pp. 1693-1707 ◽  
Author(s):  
J. M. Dixon ◽  
J. A. Tuszyński ◽  
N. H. March

In this paper we have presented a comparison of the effective one-body potentials arising in Thomas–Fermi (TF) phenomenology and density function (DF) theories on the one hand and the Method of Coherent Structures (MCS) on the other. In spite of a number of assumptions made in TF and DF, particularly in connection with the exchange component of the potential, quantitative agreement has been found with the MCS. In addition we have drawn attention to several similarities in the associated energy functionals. The Saxon–Woods potential, used in diverse contexts of many-body physics, has been shown to satisfy a nonlinear differential equation which can be transformed into a equation of the class satisfied by the classical field equation in the MCS. This indicates, once more, that there are intricate connections between phenomenological approaches, which attempt to incorporate many-body physical effects, and the systematic and unifying development offered within the MCS.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Emanuele Dalla Torre ◽  
David Dentelski

The manipulation of many-body systems often involves time-dependent forces that cause unwanted heating. One strategy to suppress heating is to use time-periodic (Floquet) forces at large driving frequencies. For quantum spin systems with bounded spectra, it was shown rigorously that the heating rate is exponentially small in the driving frequency. Recently, such exponential suppression of heating has been observed in an experiment with ultracold atoms, realizing a periodically driven Bose-Hubbard model. This model has an unbounded spectrum and, hence, is beyond the reach of previous theoretical approaches. Here, we study this model with two semiclassical approaches valid, respectively, at large and weak interaction strengths. In both limits, we compute the heating rates by studying the statistical probability to encounter a many-body resonance, and obtain a quantitative agreement with the exact diagonalization of the quantum model. Our approach demonstrates the relevance of statistical arguments to Floquet perthermalization of interacting many-body quantum systems.


2012 ◽  
Vol 3 (1) ◽  
pp. 63-73 ◽  
Author(s):  
I. Csáky ◽  
F. Kalmár

Abstract Nowadays the facades of newly built buildings have significant glazed surfaces. The solar gains in these buildings can produce discomfort caused by direct solar radiation on the one hand and by the higher indoor air temperature on the other hand. The amplitude of the indoor air temperature variation depends on the glazed area, orientation of the facade and heat storage capacity of the building. This paper presents the results of a simulation, which were made in the Passol Laboratory of University of Debrecen in order to define the internal temperature variation. The simulation proved that the highest amplitudes of the internal temperature are obtained for East orientation of the facade. The upper acceptable limit of the internal air temperature is exceeded for each analyzed orientation: North, South, East, West. Comparing different building structures, according to the obtained results, in case of the heavy structure more cooling hours are obtained, but the energy consumption for cooling is lower.


Author(s):  
Fanie du Toit

Reconciliation emphasizes relationships as a crucial ingredient of political transition; this book argues for the importance of such a relational focus in crafting sustainable political transitions. Section I focuses on South Africa’s transition to democracy—how Mandela and De Klerk persuaded skeptical constituencies to commit to political reconciliation, how this proposal gained momentum, and how well the transition resulted in the goal of an inclusive and fair society. In developing a coherent theory of reconciliation to address questions such as these, I explain political reconciliation from three angles and thereby build a concept of reconciliation that corresponds largely with the South African experience. In Section II, these questions lead the discussion beyond South Africa into some of the prominent theoretical approaches to reconciliation in recent times. I develop typologies for three different reconciliation theories: forgiveness, agonism, and social restoration. I conclude in Section III that relationships created through political reconciliation, between leaders as well as between ordinary citizens, are illuminated when understood as an expression of a comprehensive “interdependence” that precedes any formal peace processes between enemies. I argue that linking reconciliation with the acknowledgment of interdependence emphasizes that there is no real alternative to reconciliation if the motivation is the long-term well-being of one’s own community. Without ensuring the conditions in which an enemy can flourish, one’s own community is unlikely to prosper sustainably. This theoretical approach locates the deepest motivation for reconciliation in choosing mutual well-being above the one-sided fight for exclusive survival at the other’s cost.


2021 ◽  
Vol 11 (11) ◽  
pp. 5070
Author(s):  
Xesús Prieto-Blanco ◽  
Carlos Montero-Orille

In the last few years, some advances have been made in the theoretical modelling of ion exchange processes in glass. On the one hand, the equations that describe the evolution of the cation concentration were rewritten in a more rigorous manner. This was made into two theoretical frameworks. In the first one, the self-diffusion coefficients were assumed to be constant, whereas, in the second one, a more realistic cation behaviour was considered by taking into account the so-called mixed ion effect. Along with these equations, the boundary conditions for the usual ion exchange processes from molten salts, silver and copper films and metallic cathodes were accordingly established. On the other hand, the modelling of some ion exchange processes that have attracted a great deal of attention in recent years, including glass poling, electro-diffusion of multivalent metals and the formation/dissolution of silver nanoparticles, has been addressed. In such processes, the usual approximations that are made in ion exchange modelling are not always valid. An overview of the progress made and the remaining challenges in the modelling of these unique processes is provided at the end of this review.


Author(s):  
Unai Zabala ◽  
Igor Rodriguez ◽  
José María Martínez-Otzeta ◽  
Elena Lazkano

AbstractNatural gestures are a desirable feature for a humanoid robot, as they are presumed to elicit a more comfortable interaction in people. With this aim in mind, we present in this paper a system to develop a natural talking gesture generation behavior. A Generative Adversarial Network (GAN) produces novel beat gestures from the data captured from recordings of human talking. The data is obtained without the need for any kind of wearable, as a motion capture system properly estimates the position of the limbs/joints involved in human expressive talking behavior. After testing in a Pepper robot, it is shown that the system is able to generate natural gestures during large talking periods without becoming repetitive. This approach is computationally more demanding than previous work, therefore a comparison is made in order to evaluate the improvements. This comparison is made by calculating some common measures about the end effectors’ trajectories (jerk and path lengths) and complemented by the Fréchet Gesture Distance (FGD) that aims to measure the fidelity of the generated gestures with respect to the provided ones. Results show that the described system is able to learn natural gestures just by observation and improves the one developed with a simpler motion capture system. The quantitative results are sustained by questionnaire based human evaluation.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


2021 ◽  
pp. 030157422098054
Author(s):  
Renu Datta

Introduction: The upper lateral incisor is the most commonly missing tooth in the anterior segment. It leads to esthetic and functional imbalance for the patients. The ideal solution is the one that is most conservative and which fulfills the functional and esthetic needs of the concerned individual. Canine substitution is evolving to be the treatment of choice in most of the cases, because of its various advantages. These are special cases that need more time and effort from the clinicians due to space discrepancy in the upper and lower arches, along with the presentation of individual malocclusion. Aims and Objectives: Malocclusion occurring due to missing laterals is more complex, needing more time and effort from the clinicians because of space discrepancy, esthetic compromise, and individual presentation of the malocclusion. An attempt has been made in this article to review, evaluate, and tabulate the important factors for the convenience of clinicians. Method: All articles related to canine substitution were searched in the electronic database PubMed, and the important factors influencing the decision were reviewed. After careful evaluation, the checklist was evolved. Result: The malocclusions in which canine substitution is the treatment of choice are indicated in the tabular form for the convenience of clinicians. Specific treatment-planning considerations and biomechanics that can lead to an efficient and long-lasting result are also discussed. Conclusion: The need of the hour is an evidence-based approach, along with a well-designed prospective randomized control trial to understand the importance of each factor influencing these cases. Until that time, giving the available information in a simplified way can be a quality approach to these cases.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740025 ◽  
Author(s):  
J. Speth ◽  
N. Lyutorovich

Many-body Green functions are a very efficient formulation of the many-body problem. We review the application of this method to nuclear physics problems. The formulas which can be derived are of general applicability, e.g., in self-consistent as well as in nonself-consistent calculations. With the help of the Landau renormalization, one obtains relations without any approximations. This allows to apply conservation laws which lead to important general relations. We investigate the one-body and two-body Green functions as well as the three-body Green function and discuss their connection to nuclear observables. The generalization to systems with pair correlations are also presented. Numerical examples are compared with experimental data.


The freeze-etching technique must be improved if structures at the molecular size level are to be seen. The limitations of the technique are discussed here together with the progress made in alleviating them. The vitrification of living specimens is limited by the fact that very high freezing rates are needed. The critical freezing rate can be lowered on the one hand by the introduction of antifreeze agents, on the other hand by the application of high hydrostatic pressure. The fracture process may cause structural distortions in the fracture face of the frozen specimen. The ‘double-replica’ method allows one to evaluate such artefacts and provides an insight into the way that membranes split. During etching there exists the danger of contaminating the fracture faces with condensable gases. Because of specimen temperatures below —110 °C, special care has to be taken in eliminating water vapour from the high vacuum. An improvement in coating freeze-etched specimens has resulted from the application of electron guns for evaporation of the highest melting-point metals. If heat transfer from gun to specimen is reduced to a minimum, Pt, Ir, Ta, W and C can be used for shadow casting. Best results are obtained with Pt-C and Ta-W . With the help of decoration effects Pt-C shadow castings give the most information about the fine structural details of the specimen.


2009 ◽  
Vol 64 (1) ◽  
pp. 16-47
Author(s):  
Mark Noble

This essay argues that Ralph Waldo Emerson's interest in the cutting-edge science of his generation helps to shape his understanding of persons as fluid expressions of power rather than solid bodies. In his 1872 "Natural History of Intellect," Emerson correlates the constitution of the individual mind with the tenets of Michael Faraday's classical field theory. For Faraday, experimenting with electromagnetism reveals that the atom is a node or point on a network, and that all matter is really the arrangement of energetic lines of force. This atomic model offers Emerson a technology for envisioning a materialized subjectivity that both unravels personal identity and grants access to impersonal power. On the one hand, adopting Faraday's field theory resonates with many of the affirmative philosophical and ethical claims central to Emerson's early essays. On the other hand, however, distributing the properties of Faraday's atoms onto the properties of the person also entails moments in which materialized subjects encounter their own partiality, limitation, and suffering. I suggest that Emerson represents these aspects of experience in terms that are deliberately discrepant from his conception of universal power. He presumes that if every experience boils down to the same lines of force, then the particular can be trivialized with respect to the general. As a consequence, Emerson must insulate his philosophical assertions from contamination by our most poignant experiences of limitation. The essay concludes by distinguishing Emersonian "Necessity" from Friedrich Nietzsche's similar conception of amor fati, which routes the affirmation of fate directly through suffering.


Sign in / Sign up

Export Citation Format

Share Document