EPR STUDY OF Fe3+ AND Mn2+ DOPED AMORPHOUS AND CRYSTALLINE ALUMINUM BORATES

2000 ◽  
Vol 14 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. SIMON ◽  
I. ARDELEAN ◽  
M. PETEANU ◽  
M. POP ◽  
R. STEFAN

Amorphous and crystalline aluminum borates prepared by sol–gel method doped with iron and manganese were studied by electron paramagnetic resonance in order to determine the matrix effects on Fe3+ and Mn2+ environments during their consolidation by heat treatment up to 860°C. In amorphous matrices, after heat treatments up to 600°C, the Fe3+ environment is almost unaffected but the vicinity of Mn2+ ions is relatively strongly disordered. In partial crystalline alumina and aluminum borate samples, obtained after heat treatments applied at 860°C, the Fe3+ sites are subjected to completely different crystalline fields, as regards intensity and symmetry. If in crystalline alumina we have both sites typical for α and γ phases in crystalline aluminum borate, the well-known spectrum of Fe3+ in disordered systems seems to be solved, suggesting more than one well-defined site. In the case of manganese-doped samples, only a diminishing of hyperfine resolution with increasing heat treatment temperature is observed as a result of environment distortion by improvement of alumina borate sample crystallinity.

2007 ◽  
Vol 124-126 ◽  
pp. 1031-1034
Author(s):  
Bong Soo Jin ◽  
Bok Ki Min ◽  
Chil Hoon Doh

To find out suitable Si surface treatment and heat treatment conditions, acid treatment of Si wafer was done for lithium polysilicate electrolyte coating on Si wafer. In case of HCl treatment, the wet angle of a sample is 30o, which is the smallest wet angle of other acid in this experiment. Acid treatment time is 10 min, which is no more change of wet angle. Lithium polysilicate electrolyte was synthesized by hydrolysis and condensation of lithium silicate solution using perchloric acid. Thermal analysis of lithium polysilicate electrolyte shows the weight loss of ~23 % between 400 and 500 , which is due to the decomposition of LiClO4. The XRD patterns of the obtained lithium polysilicate electrolyte also show the decrement of LiClO4 peak at 400 . The optimum heat treatment temperature is below 400 , which is the suitable answer for lithium polysilicate electrolyte.


2013 ◽  
Vol 712-715 ◽  
pp. 257-261
Author(s):  
Yin Lin Wu ◽  
Qing Hui Wang ◽  
Ling Wang ◽  
Hai Yan Zhao

The La0.75Sr0.25Cr0.5Mn0.5O3-δnanometer powders were prepared by citric acid sol-gel method.The samples were characterized by DTA, FT-IR, XRD, TEM techniques. The preparation process, morphology of synthesized powders, the best heat-treatment temperature and the electrochemical performance had been studied. The results show that the spherical nanometer powders can be obtained and the best heat-treatment temperature is 800°C. The particle size is about 30nm and Ea is 0.071 eV.


2004 ◽  
Vol 855 ◽  
Author(s):  
Carl P. Frick ◽  
Alicia M. Ortega ◽  
Jeff Tyber ◽  
Ken Gall ◽  
Hans J. Maier ◽  
...  

ABSTRACTThe objective of this study is to examine the effect of heat treatment on polycrystalline Ti-50.9 at.%Ni subsequent to hot-rolling. In particular we examine microstructure, transformation temperatures and mechanical behavior of deformation processed NiTi. The results constitute a fundamental understanding of the effect of heat treatment on thermal/stress induced martensite, which is critical for optimizing mechanical properties. The high temperature of the hot-rolling process caused recrystallization, recovery, and hindered precipitate formation, essentially solutionizing the NiTi. Subsequent heat treatments were carried out at various temperatures for 1.5 hours. Transmission Electron Microscopy (TEM) observations revealed that Ti3Ni4 precipitates progressively increased in size and changed their interface with the matrix from being coherent to incoherent with increasing heat treatment temperature. Accompanying the changes in precipitate size and interface coherency, transformation temperatures were observed to systematically shift, leading to the occurrence of the R-phase and multiple-stage transformations. Room temperature stress-strain tests illustrated a variety of mechanical responses for the various heat treatments, from pseudoelasticity to shape memory. The changes in stress-strain behavior are interpreted in terms of shifts in the primary martensite transformation temperatures, rather then the occurrence of the R-phase transformation. The results confirm that Ti3Ni4 precipitates can be used to elicit a desired isothermal stress-strain behavior in polycrystalline NiTi.


2010 ◽  
Vol 105-106 ◽  
pp. 123-125 ◽  
Author(s):  
Yong Li ◽  
Qi Hong Wei ◽  
Ling Li ◽  
Chong Hai Wang ◽  
Xiao Li Zhang ◽  
...  

In this paper, negative thermal expansion coefficient eucryptite powders were prepared by sol-gel method using silica-sol as starting material. The raw blocks were obtained by dry pressing process after the powder was synthesized, and then the raw blocks were heat-treated at 600º, 1150º, 1280º, 1380º, 1420º and 1450°C, respectively. Variations of density, porosity and thermal expansion coefficient at different heat treatment temperatures were investigated. Phase transformation and fracture surface morphology of eucryptite heat-treated at different temperatures, respectively, were observed by XRD and SEM. The results indicate that, with the increasing heat- treatment temperature, the grain size and the bending strength increased, porosity decreased, thermal expansion coefficient decreased continuously. Negative thermal expansion coefficient of -5.3162×10-6~-7.4413×10-6 (0~800°C) was obtained. But when the heat-treatment temperature was more than 1420°C, porosity began to increase, bending strength began to decrease, which were the symbols of over-burning, while the main crystal phase didn’t change.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. Rezaee ◽  
Gh. R. Rashed ◽  
M. A. Golozar

Sol-gel 8 wt.% Yttria Stabilized Zirconia (YSZ) thin films were prepared on zirconium (zircaloy-4 alloy) by dip-coating technique followed by heat treating at various temperatures (200°C, 400°C, and 700°C) in order to improve both electrochemical corrosion and high temperature oxidation properties of the substrate. Differential thermal analysis and thermogravimetric analysis (DTA-TG) revealed the coating formation process. X-ray diffraction (XRD) was used to determine the crystalline phase structure transformation. The morphological characterization of the coatings was carried out using scanning electron microscopy (SEM). The electrochemical behavior of the coated and uncoated samples was investigated by means of open circuit potential, Tafel, and electrochemical impedance spectroscopy (EIS) in a 3.5 wt.% NaCl solution. The homogeneity and surface appearance of coatings produced was affected by the heat treatment temperature. According to the corrosion parameters, the YSZ coatings showed a considerable increase in the corrosion resistance, especially at higher heat treatment temperatures. The coating with the best quality, from the surface and corrosion point of view, was subjected to oxidation test in air at 800°C. The coated sample presented a 25% reduction in oxidation rate in comparison with bare substrate.


2014 ◽  
Vol 936 ◽  
pp. 975-980 ◽  
Author(s):  
Kai Lin Fu ◽  
Wei Hui Jiang ◽  
Guo Feng ◽  
Jian Min Liu ◽  
Qian Wu ◽  
...  

Mullite whisker was prepared at low temperature via non-hydrolytic sol-gel (NHSG) process combined with molten salt method. The influence of heat treatment temperature was studied on the morphology and the microstructure of whisker, and its growth mechanism was also described. The results show that the mullite whisker appears at the lowest temperature of 750 °C, and optimized mullite whisker can be prepared at 850 °C with the growth direction of [00, whose diameter is in the range of 170~300 nm with the aspect ratio of >30.


2012 ◽  
Vol 512-515 ◽  
pp. 1686-1689
Author(s):  
Jie Chen ◽  
Le Fu Mei ◽  
Li Bing Liao

In this paper, porous carbon has been used to carry TiO2 and TiO2-N by a sol-gel process. The effect of soaking time, heat treatment temperature, and heat treatment time on the carrying efficiency have been studied. XRD experiments indicated that TiO2 and TiO2-N crystallized in anatase and rutile with the ratio of 3∶2. SEM images showed that island-like TiO2 and TiO2-N particles with diameters in the range of 1-5um, the biggest size is about 10um, were evenly coated on the surface of the porous carbon.


2008 ◽  
Vol 23 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Zhongyuan Lu ◽  
Fangfang He ◽  
Pichi Xu ◽  
Yuancheng Teng ◽  
Bing Wang

2010 ◽  
Vol 663-665 ◽  
pp. 397-400 ◽  
Author(s):  
Peng Fei Cheng ◽  
Sheng Tao Li ◽  
Han Chen Liu ◽  
Li Xun Song ◽  
Bin Gao ◽  
...  

The effect of an impurity as a donor or an acceptor in ZnO film is determined by its distribution in ZnO lattice. In this paper the distribution of Li is investigated by X-ray diffraction (XRD) and photoluminescence (PL). It is found that Li-doped ZnO films own different dependence on heat treatment temperature by contrast with pure ZnO films. For Li-doped ZnO films, although the crystallinity is promoted after heat treatment at 500oC, it is impeded effectively after heat treatment at 600oC. The abnormal phenomenon implies that Li preferential inhabits at Zn-sublattice to form a substitutional defect as an acceptor unless Li content exceeds its solubility in Zn-sublattice. The change of the PL spectra of pure ZnO films after heat treatment at different temperatures reveals that the PL peak at 650nm origins from interstitial defects. Moreover, with the increase of Li content, the intensity of the peak at 650nm decreases firstly and then increases again. This interesting changing trend further reveals that superfluous Li will enter into the octahedral interspaces as donors. As a conclusion it is proposed that it is difficult to obtain high conductive p-ZnO by monodoping of Li.


2014 ◽  
Vol 1078 ◽  
pp. 31-35
Author(s):  
Liang Zhao ◽  
Qun Hu Xue ◽  
Dong Hai Ding

MgO-Al2O3-ZrO2composite powders with 3 kinds of mass ratio were synthesized by sol–gel method using MgCl2·6H2O, AlCl3·6H2O and ZrOCl2·8H2O as starting materials, and NH3·H2O as a precipitant. The composite powders which match with zirconium oxide particle size and evenly distribute can are advantageous to the formation of metastable t-ZrO2and restrain the grain growth as the additive of modified sizing nozzle. Chemical composition, mineral phase, particle size distribution and micro-morphology of the composite powders were investigated by X-ray fluorescence instrument, X-ray diffractometer, laser particle size analyzer and scanning electron microscope. Research showed that under the process that the concentration of MgCl2solution 0.2 mol/L, AlCl3and ZrOCl2solution concentration 0.5 mol/L, the pH controlled between 10 ~ 11, PEG as the surfactant, drying at 70°C±5°C, heat treatment temperature at 800°C for 3h, particle size distribution of MgO-Al2O3-ZrO2composite powders were: d10= 1.28 μm, d50= 4.65μm, d90= 11.13μm (MgO 10%); d10= 1.15μm, d50= 5.80μm, d90= 15.13μm (MgO 15%);d10= 1.21μm, d50= 6.59μm, d90= 16.87μm (MgO 20%). With the rising of heat treatment temperature, the crystallization degree of composite powders increased, at 800 °C a small amount of t - ZrO2precipitated, meanwhile MgO and Al2O3are still in the amorphous phase. The MgO-A12O3-ZrO2composite powders under this condition have high reactivity and uniform distribution.


Sign in / Sign up

Export Citation Format

Share Document