A Compact High-Performance 10-bit 30-Channel OLED Driver Using Switched Capacitor Circuit for High-Linearity Application

Author(s):  
Neeru Agarwal ◽  
Neeraj Agarwal ◽  
Chih-Wen Lu

This work proposes a new OLED driver architecture with 10-bit segmented DAC and switched capacitor multiply-by-two circuit application. A 30-channel 10-bit switched capacitor driver chip prototype is implemented in 0.18-[Formula: see text]m CMOS technology. In this architecture, the achieved output range is 1.5–4.8[Formula: see text]V for an input range of 1.5–3.15[Formula: see text]V, which is suitable for OLED driver with different colors. This architecture is not only converting the digital input signal to analog output for the display panel but also giving amplified high output voltage range. In the segmented DAC, 6-bit coarse DAC and 4-bit fine DAC are used for the input voltage range 1.5–3.15[Formula: see text]V. In a conventional RDAC for the output voltage of 4.8[Formula: see text]V, it requires 2[Formula: see text] switches i.e., 14-bit RDAC for the same resolution. Hence, conventional RDAC driver is four times larger than the proposed innovative very compact and high speed 10-bit segmented DAC switched capacitor OLED driver. The new architecture drastically reduces the number of switches and complex metal routing which results in reduced power consumption and good settling time. In the proposed OLED driver, no extra buffer is required as switched capacitor op-amp is applied for the same purpose with a gain of more than one. This high-resolution design with small die area also improves the linearity and uniformity with low-power consumption. The post-simulated results show that the OLED driver exhibits the maximum DNL and INL of 0.03 LSB and [Formula: see text]0.06 LSB, respectively, with an LSB voltage of 3[Formula: see text]mV. The one-channel area is 0.586[Formula: see text]mm [Formula: see text] 0.017[Formula: see text]mm and the settling time is 4.25[Formula: see text][Formula: see text]s for 30[Formula: see text]k[Formula: see text] and 30[Formula: see text]pF driving load.

2019 ◽  
Vol 29 (01) ◽  
pp. 2050013
Author(s):  
Najmeh Cheraghi Shirazi ◽  
Abumoslem Jannesari ◽  
Pooya Torkzadeh

A new self-start-up switched-capacitor charge pump is proposed for low-power, low-voltage and battery-less implantable applications. To minimize output voltage ripple and improve transient response, interleaving regulation technique is applied to a multi-stage Cross-Coupled Charge Pump (CCCP) circuit. It splits the power flow in a time-sequenced manner. Three cases of study are designed and investigated with body-biasing technique by auxiliary transistors: Four-stage Two-Branch CCCP (TBCCCP), the two-cell four-stage Interleaved Two-Branch CCCP (ITBCCCP2) and four-cell four-stage Interleaved Two-Branch CCCP (ITBCCCP4). Multi-phase nonoverlap clock generator circuit with body-biasing technique is also proposed which can operate at voltages as low as CCCP circuits. The proposed circuits are designed with input voltage as low as 300 to 400[Formula: see text]mV and 20[Formula: see text]MHz clock frequency for 1[Formula: see text]pF load capacitance. Among the three designs, ITBCCCP4 has the lowest ramp-up time (41.6% faster), output voltage ripple (29% less) and power consumption (19% less). The Figure-Of-Merit (FOM) of ITBCCCP4 is the highest value among two others. For 400[Formula: see text]mV input voltage, ITBCCCP4 has a 98.3% pumping efficiency within 11.6[Formula: see text][Formula: see text]s, while having a maximum voltage ripple of 0.1% and a power consumption as low as 2.7[Formula: see text]nW. The FOM is 0.66 for this circuit. The designed circuits are implemented in 180-nm standard CMOS technology with an effective chip area of [Formula: see text][Formula: see text][Formula: see text]m for TBCCCP, [Formula: see text][Formula: see text][Formula: see text]m for ITBCCCP2 and [Formula: see text][Formula: see text][Formula: see text]m for ITBCCCP4.


The main intention of this paper is to understand clearly about the high performance of 4T-SRAM with an improved write margin. the power consumption is often reduced considerably by using a buried power rail (BPR) to the SRAM cell, which reduces the resistance of bit line and word line. The write margin is often increased by the fine standardization of metal dimensions within the SRAM cell. Conventionally, 4T-SRAM cell offers high speed and fewer space compared to 6T-SRAM cell. 4T-SRAM is actualized using 130nm CMOS Technology.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750180 ◽  
Author(s):  
Leila Safari ◽  
Shahram Minaei

In this paper, a CMOS resistor-based current mirror (RBCM) aimed to be used in low-voltage applications is presented. The main features of the proposed current mirror are very low input voltage requirement (a few mV), low output voltage requirement, high output impedance and simple circuitry. The core structure of the proposed RBCM consists of three transistors (excluding bias circuitry) and two low value grounded resistors. The proposed circuit alleviates the need for cascode structures which are conventionally used to boost the output impedance and linearity. SPICE simulations using 0.18[Formula: see text][Formula: see text]m CMOS technology parameters under supply voltage of 0.9[Formula: see text]V are reported which show input and output voltage requirements of 40[Formula: see text]mV and 0.1[Formula: see text]V respectively, low THD of 1.2%, [Formula: see text] of 496[Formula: see text][Formula: see text], [Formula: see text] of 1[Formula: see text]M[Formula: see text], [Formula: see text]3[Formula: see text]dB bandwidth of 181[Formula: see text]MHz and power dissipation of 154[Formula: see text][Formula: see text]W. A high CMRR differential amplifier and a high performance current difference circuit as applications of the proposed RBCM are given. The proposed RBCM is very useful in tackling restrictions of modern technologies such as reduced supply voltage and transistors low intrinsic output impedance.


Author(s):  
Jitendra Kumar Saini ◽  
Avireni Srinivasulu ◽  
Renu Kumawat

Background: The advent of High Performance Computing (HPC) applications and big data applications has made it imparitive to develop hardware that can match the computing demands. In such high performance systems, the high speed multipliers are the most sought after components. A compressor is an important part of the multiplier; it plays a vital role in the performance of multiplier, also it contributes to the efficiency enhancement of an arithmetic circuit. The 5:2 compressor circuit design proposed here improves overall performance and efficiency of the arithmetic circuits in terms of power consumption, delay and power delay product. The proposed 5:2 compressor circuit was implemented using both CMOS and Carbon Nano Tube Field Effect Transistor (CNTFET) technologies and it was observed that the proposed circuit has yielded better results with CNTFETs as compared to MOSFETs. Methods/Results: The proposed 5:2 compressor circuit was designed with CMOS technology simulated at 45 nm with voltage supply 1.0 V and compared it with the existing 5:2 compressor designes to validate the improvements. Thereafter, the proposed design was implemented with CNTFET technology at 32 nm and simulated with voltage supply 0.6 V. The comparision results of proposed 5:2 compressor with existing designs implemented using CMOS. The results also compare the proposed design on CMOS and CNTFET technologies for parameters like power, delay, power delay product. Conclusion: It can be concluded that the proposed 5:2 compressor gives better results as compared to the existing 5:2 compressor designs implemeted using CMOS. The improvement in power, delay and power delay product is approx 30%, 15% and 40% respectively. The proposed circuit of 5:2 compressor is also implemented using CNTFET technology and compared, which further enhances the results by 30% (power consumption and PDP). Hence, the proposed circuit implemented using CNTFET gives substantial improvements over the existing circuits.


2010 ◽  
Vol 19 (07) ◽  
pp. 1579-1596 ◽  
Author(s):  
XUGUANG GUAN ◽  
ZHANGMING ZHU ◽  
DUAN ZHOU ◽  
YINTANG YANG

To improve the shortcomings of long arbitration–allocation time and large power consumption in conventional network on chips, this paper proposes a high speed multi-resource arbiter with active virtual channel allocation. Through arbitrating the acknowledgement signals of virtual channels, the virtual channels can attend the arbitration–allocation process actively. Thus reduces the virtual channel allocation time. Furthermore, the proposed multi-resource arbiter has integrated the function of virtual channel allocation, which improves the performance and simplifies the design process simultaneously. Null convention logic units are used to make the circuit quasi-delay insensitive and high robustness. The proposed multi-resource arbiter is implemented based on SMIC 0.18 μm standard CMOS technology. Results have shown that the arbitration–allocation time of the arbiter is only 824.1 ps, which reduced 25.1% compared with the conventional one. The power consumption and the area are slightly larger than the conventional ones. The proposed high speed multi-resource arbiter is suitable for high performance and high robustness interconnections of on chip networks.


Author(s):  
Fadhilah Binti Noor Al Amin ◽  
Nabihah Ahmad ◽  
Siti Hawa Ruslan

<span>The rapid growth of the electronic system has become one of the challenges in the high performance of Very Large Scale Integration (VLSI) design and has contributed to the evolution of Phase Locked Loop (PLL) system design as one of the inevitable and significant necessities in the modern days. This design focus on the development of PLL system that can operate at a high performance within the Ultra-Wideband (UWB) frequency but consume low power that may be useful for future device implementation in the communication system. All proposed sub modules of PLL is highly suitable for low power and high speed application as each of them consumes overall power consumption around 2 µW until 1 mW with frequency from 3.1 GHz to 10.6 GHz. All the design architecture, schematic, simulation and analysis are implemented using Synopsys Tool in 90 nm CMOS technology. Through the overall analysis, it can be concluded that this proposed sub modules design of the PLL system has better performance compared to previous work in terms of power consumption and frequency.</span>


2014 ◽  
Vol 543-547 ◽  
pp. 800-805 ◽  
Author(s):  
Shang Sheng Chi ◽  
Wei Hu ◽  
Ming Hui Fan ◽  
Yu Sen Xu ◽  
Guo Lin Chen

This paper presents a capacitor-less CMOS low dropout regulator (LDO) with a push-pull class AB amplifier, and a fast transient controller to achieve a better transient response. The undershoot/overshoot voltage and the settling time are effectively reduced. Through the theoretical analysis of the circuit, cadence simulation with SMIC 0.18μm process and under the condition of the input voltage range 1.4~4 V shows the output voltage is 1.2 V, with the fast controller the total quiescent current is 8.2 μA, the undershoot /overshoot voltage is 97 mV/47 mV and the settling time is 0.3 μs as load current suddenly changes from 1 to 100 mA, or vice versa. Compared with this paper without fast transient controller, the undershoot voltage, the overshoot voltage and the settling time are enhanced by 30%, 64% and 80%, respectively.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Author(s):  
GOPALA KRISHNA.M ◽  
UMA SANKAR.CH ◽  
NEELIMA. S ◽  
KOTESWARA RAO.P

In this paper, presents circuit design of a low-power delay buffer. The proposed delay buffer uses several new techniques to reduce its power consumption. Since delay buffers are accessed sequentially, it adopts a ring-counter addressing scheme. In the ring counter, double-edge-triggered (DET) flip-flops are utilized to reduce the operating frequency by half and the C-element gated-clock strategy is proposed. Both total transistor count and the number of clocked transistors are significantly reduced to improve power consumption and speed in the flip-flop. The number of transistors is reduced by 56%-60% and the Area-Speed-Power product is reduced by 56%-63% compared to other double edge triggered flip-flops. This design is suitable for high-speed, low-power CMOS VLSI design applications.


Author(s):  
Tejaswini M. L ◽  
Aishwarya H ◽  
Akhila M ◽  
B. G. Manasa

The main aim of our work is to achieve low power, high speed design goals. The proposed hybrid adder is designed to meet the requirements of high output swing and minimum power. Performance of hybrid FA in terms of delay, power, and driving capability is largely dependent on the performance of XOR-XNOR circuit. In hybrid FAs maximum power is consumed by XOR-XNOR circuit. In this paper 10T XOR-XNOR is proposed, which provide good driving capabilities and full swing output simultaneously without using any external inverter. The performance of the proposed circuit is measured by simulating it in cadence virtuoso environment using 90-nm CMOS technology. This circuit outperforms its counterparts showing power delay product is reduced than that of available XOR-XNOR modules. Four different full adder designs are proposed utilizing 10T XOR-XNOR, sum and carry modules. The proposed FAs provide improvement in terms of PDP than that of other architectures. To evaluate the performance of proposed full adder circuit, we embedded it in a 4-bit and 8-bit cascaded full adder. Among all FAs two of the proposed FAs provide the best performance for a higher number of bits.


Sign in / Sign up

Export Citation Format

Share Document