scholarly journals Charged Particle Trajectories in a Toroidal Magnetic and Rotation-Induced Electric Field Around a Black Hole

1997 ◽  
Vol 06 (05) ◽  
pp. 591-606 ◽  
Author(s):  
Sujan Sengupta

Trajectories of charged particles in a combined poloidal, toroidal magnetic field and a rotation-induced unipolar electric field superposed on a Schwarzschild background geometry have been investigated extensively in the context of accreting black holes. The main purpose of this paper is to obtain a reasonably good insight on the effect of spacetime curvature on the electromagnetic field surrounding black holes. The coupled equations of motion have been solved numerically and the results have been compared with that for flat spacetime. It is found that the toroidal magnetic field dominates the induced electric field in determining the motion of charged particles in curved spacetime. The combined electromagnetic field repels a charged particle from the vicinity of a compact massive object and deconfines the particle from its orbit. In the absence of a toroidal magnetic field the particle is trapped in a closed orbit. The major role of gravitation is to reduce the radius of gyration significantly while the electric field provides an additional force perpendicular to the circular orbit. Although the effect of inertial frame dragging and the effect of magnetospheric plasma have been neglected, the results provide a reasonably good qualitative picture of the important role played by gravitation in modifying the electromagnetic field near accreting black holes and hence the results have potentially important implications on the dynamics of the fluid and the radiation spectrum associated with accreting black holes.

2006 ◽  
Vol 2 (S238) ◽  
pp. 395-396
Author(s):  
V. Kryvdyk ◽  
A. Agapitov

AbstractThe formation of the relativistic jets and a non-thermal emission from the collapsing magnetized stars with dipole magnetic fields and the heterogeneous particles distribution are investigated. These polar jets are formed when the stellar magnetosphere compress during collapse its magnetic field increases considerable. The electric field is produced in magnetosphere, which the charged particles will be accelerated. As follow from the calculation, the jets can be formed from collapsing stars already the explosion of supernova stars without shock waves. These jets will generate the non-thermal radiation. The radiation flux depends on the distance to the star, its magnetic field and the particle spectrum in the magnetosphere. This flux can be observed near Earth by means of modern telescopes in the form of the radiation pulse with duration equal to time collapse.


2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


Author(s):  
Lei Tian ◽  
Limei Song ◽  
Yu Zheng ◽  
Jinhai Wang

Multi-coil magnetic stimulation has advantages over single-coil magnetic stimulation, such as more accurate targeting and larger stimulation range. In this paper, a 4 × 4 array multichannel magnetic stimulation system based on a submillimeter planar square spiral coil is proposed. The effects of multiple currents with different directions on the electromagnetic field strength and the focusing zone of the array-structured magnetic stimulation system are studied. The spatial distribution characteristics of the electromagnetic field are discussed. In addition, a method is proposed that can predict the spatial distributions of the electric and magnetic fields when currents in different directions are applied to the array-structured magnetic stimulation system. The study results show that in the section of z = 2 μm, the maximum and average magnetic field strengths of the array-structured magnetic stimulation system are 6.39 mT and 2.68 mT, respectively. The maximum and average electric field strengths are 614.7 mV/m and 122.82 mV/m, respectively, where 84.39% of the measured electric field values are greater than 73 mV/m. The average magnetic field strength of the focusing zone, i.e., the zone in between the two coils, is 3.38 mT with a mean square deviation of 0.18. Therefore, the array-structured multi-channel magnetic stimulation system based on a planar square spiral coil can have a small size of 412 μm × 412 μm × 1.7 μm, which helps improving the spatial distribution of electromagnetic field and increase the effectiveness of magnetic stimulation. The main contribution of this paper is a method for designing multichannel micro-magnetic stimulation devices.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 122 ◽  
Author(s):  
Kouichi Hirotani

When a black hole accretes plasmas at very low accretion rate, an advection-dominated accretion flow (ADAF) is formed. In an ADAF, relativistic electrons emit soft gamma-rays via Bremsstrahlung. Some MeV photons collide with each other to materialize as electron-positron pairs in the magnetosphere. Such pairs efficiently screen the electric field along the magnetic field lines, when the accretion rate is typically greater than 0.03–0.3% of the Eddington rate. However, when the accretion rate becomes smaller than this value, the number density of the created pairs becomes less than the rotationally induced Goldreich–Julian density. In such a charge-starved magnetosphere, an electric field arises along the magnetic field lines to accelerate charged leptons into ultra-relativistic energies, leading to an efficient TeV emission via an inverse-Compton (IC) process, spending a portion of the extracted hole’s rotational energy. In this review, we summarize the stationary lepton accelerator models in black hole magnetospheres. We apply the model to super-massive black holes and demonstrate that nearby low-luminosity active galactic nuclei are capable of emitting detectable gamma-rays between 0.1 and 30 TeV with the Cherenkov Telescope Array.


1997 ◽  
Vol 11 (12) ◽  
pp. 531-540
Author(s):  
V. Onoochin

An experiment within the framework of classical electrodynamics is proposed, to demonstrate Boyer's suggestion of a change in the velocity of a charged particle as it passes close to a solenoid. The moving charge is replaced by an ultra-short pulse (USP), whose characteristics should depend on the current in the coil. This dependence results from the exchange of energy between the electromagnetic field of the pulse and the magnetic field within the solenoid. This energy exchange could only be explained, by assuming that the vector potential of the solenoid has a direct influence on the pulse.


1972 ◽  
Vol 51 (3) ◽  
pp. 585-591 ◽  
Author(s):  
C. Sozou

The deformation of a liquid drop immersed in a conducting fluid by the imposition of a uniform electric field is investigated. The flow field set up is due to the surface charge and the tangential electric field stress over the surface of the drop, and the rotationality of the Lorentz force which is set up by the electric current and the associated magnetic field. It is shown that when the fluids are poor conductors and good dielectrics the effects of the Lorentz force are minimal and the flow field is due to the stresses of the electric field tangential to the surface of the drop, in agreement with other authors. When, however, the fluids are highly conducting and poor dielectrics the effects of the Lorentz force may be predominant, especially for larger drops.


2009 ◽  
Vol 17 (4) ◽  
Author(s):  
A. Dubik ◽  
M.J. Małachowski

AbstractIn this paper, the trajectory and kinetic energy of a charged particle, subjected to interaction from a laser beam containing an additionally applied external static axial magnetic field, have been analyzed. We give the rigorous analytical solutions of the dynamic equations. The obtained analytical solutions have been verified by performing calculations using the derived solutions and the well known Runge-Kutta procedure for solving original dynamic equations. Both methods gave the same results. The simulation results have been obtained and presented in graphical form using the derived solutions. Apart from the laser beam, we show the results for a maser beam. The obtained analytical solutions enabled us to perform a quantitative illustration, in a graphical form of the impact of many parameters on the shape, dimensions and the motion direction along a trajectory. The kinetic energy of electrons has also been studied and the energy oscillations in time with a period equal to the one of a particle rotation have been found. We show the appearance of, so-called, stationary trajectories (hypocycloid or epicycloid) which are the projections of the real trajectory onto the (x, y) plane. Increase in laser or maser beam intensity results in the increase in particle’s trajectory dimension which was found to be proportional to the amplitude of the electric field of the electromagnetic wave. However, external magnetic field increases the results in shrinking of the trajectories. Performed studies show that not only amplitude of the electric field but also the static axial magnetic field plays a crucial role in the acceleration process of a charged particle.At the authors of this paper best knowledge, the precise analytical solutions and theoretical analysis of the trajectories and energy gains by the charged particles accelerated in the laser beam and magnetic field are lacking in up to date publications. The authors have an intention to clarify partly some important aspects connected with this process. The presented theoretical studies apply for arbitrary charged particle and the attached figures-for electrons only.


Sign in / Sign up

Export Citation Format

Share Document