MECHANICAL PROPERTIES OF THE Fe-Al-Nb COATING BY DOUBLE GLOW PLASMA SURFACE METALLURGY

2018 ◽  
Vol 25 (08) ◽  
pp. 1950034 ◽  
Author(s):  
ZELEI ZHANG ◽  
ZHENGJUN YAO

The Q235 steel was covered by Fe–Al–Nb alloyed coating to improve the mechanical properties of the Q235 steel. This double glow plasma surface metallurgy (DGPSM) surface modification technique was carried out at 1023[Formula: see text]K and pressure of 38[Formula: see text]Pa for 4.5[Formula: see text]h. The surface morphology represented the typical Volmer–Weber mode, an island structure which was accumulated by numerous small particles, and most of the angles formed between three islands were about 120[Formula: see text] where there was no appreciable defect. Meanwhile, in the cross-sectional morphology of the Fe–Al–Nb coating, there was a deposition layer, a diffusion layer and two transition regions between the different adjacent interfaces, and the coating approximate 17[Formula: see text][Formula: see text]m was found to be metallurgically adhered to the Q235 steel. The basic mechanical properties of the Fe–Al–Nb coating and Q235 steel including the hardness, elastic modulus and friction performance were measured and compared. The results showed that the formation of Fe3Al, FeAl, and Fe2Nb intermetallic compounds and Nb carbides in the coating can enhance the mechanical properties of the treated sample. The nanoindentation tests indicated that the hardness and elastic modulus of Fe–Al–Nb coating were 8.08[Formula: see text]GPa and 260.03[Formula: see text]GPa which were much higher than Q235 steel. The sliding friction tests showed that Fe–Al–Nb coating significantly improved the friction performance of Q235 steel at the speed of 300, 600 and 900[Formula: see text]rpm with load 320[Formula: see text]g for 15[Formula: see text]min.

2007 ◽  
Vol 330-332 ◽  
pp. 907-910
Author(s):  
Fa Ming Zhang ◽  
Jiang Chang ◽  
Jian Xi Lu ◽  
Kai Li Lin

Attempt to increase the mechanical properties of porous bioceramics, a dense/porous structured β-TCP bioceramics that mimic the characteristics of nature bone were fabricated. Experimental results show that the dense/porous structured β-TCP bioceramics demonstrated excellent mechanical properties with compressive strength up to 74 MPa and elastic modulus up to 960 MPa, which could be tailored by the dense/porous cross-sectional area ratio obeying the rule of exponential growth. The interface between the dense and porous bioceramics is connected compactly and tightly with some micropores distributed in the matrix of both porous and dense counterparts. The dense/porous structure of β-TCP bioceramics may provide an effective way to increase the mechanical properties of porous bioceramics for bone regeneration at weight bearing sites.


2021 ◽  
Vol 30 ◽  
pp. 263498332110061
Author(s):  
Gunyong Hwang ◽  
Dong Hyun Kim ◽  
Myungsoo Kim

This research aims to optimize the mechanical properties of woven fabric composites, especially the elastic modulus. A micromechanics model of woven fabric composites was used to obtain the mechanical properties of the fiber composite, and a genetic algorithm (GA) was employed for the optimization tool. The structure of the fabric fiber was expressed using the width, thickness, and wave pattern of the fiber strands in the woven fabric composites. In the GA, the chromosome string consisted of the thickness and width of the fill and warp strands, and the objective function was determined to maximize the elastic modulus of the composite. Numerical analysis showed that the longitudinal mechanical properties of the strands contributed significantly to the overall elastic modulus of the composites because the longitudinal property was notably larger than the transverse property. Therefore, to improve the in-plane elastic modulus, the resulting geometry of the composites possessed large volumes of related strands with large cross-sectional areas and small strand waviness. However, the numerical results of the out-of-plane elastic modulus generated large strand waviness, which contributed to the fiber alignment in the out-of-plane direction. The findings of this research are expected to be an excellent resource for the structural design of woven fabric composites.


2012 ◽  
Vol 27 (2) ◽  
pp. 282-286 ◽  
Author(s):  
Jukka Ketoja ◽  
Sami Paavilainen ◽  
James Liam McWhirter ◽  
Tomasz Róg ◽  
Juha Järvinen ◽  
...  

Abstract We have carried out atomistic molecular dynamics simulations to study the mechanical properties of cellulose nanofibrils in water and ethanol. The studied elementary fibrils consisted of regions having 34 or 36 cellulose chains whose cross-sectional diameter across the fibril was roughly 3.4 nm. The models used in simulations included both crystalline and non-crystalline regions, where the latter were designed to describe the essentials parts of amorphous cellulose nanofibrils. We examined different numbers of connecting chains between the crystallites, and found out that the elastic constants, inelastic deformations, and strength of the fibril depend on this number. For example, the elastic modulus for the whole fibril can be estimated to increase by 4 GPa for each additional connecting chain.


2010 ◽  
Vol 154-155 ◽  
pp. 1659-1663
Author(s):  
Zheng Bing Qi ◽  
Peng Sun ◽  
Fang Ping Zhu ◽  
Ruo Xuan Huang ◽  
Zhou Cheng Wang ◽  
...  

The influence of working pressure on microstructure and mechanical properties of magnetron sputtered ZrN coatings were systemically investigated. The results reveal that a decreased working pressure results in preferred orientation evolution from (111) to (200) and cross-sectional morphologies transition from columnar structure to equiaxed grains. These microstructural changes are considered responsible for an increase in hardness and modulus with decreasing working pressure. Chip spallation and plastic deformation failure modes are observed during scratch testing, and the increased critical loads are attributed to higher hardness and elastic modulus, as well as moderate compressive stress at lower working pressure.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Changqi Luo ◽  
Junyi Liao ◽  
Zhenglin Zhu ◽  
Xiaoyu Wang ◽  
Xiao Lin ◽  
...  

The effect of age on mechanical behavior and microstructure anisotropy of bone is often ignored by researchers engaged in the study of biomechanics. The objective of our study was to determine the variations in mechanical properties of canine femoral cortical bone with age and the mechanical anisotropy between the longitudinal and transverse directions. Twelve beagles divided into three age groups (6, 12, and 36 months) were sacrificed and all femurs were extracted. The longitudinal and transverse samples of cortical bone were harvested from three regions of diaphysis (proximal, central, and distal). A nanoindentation technique was used for simultaneously measuring force and displacement of a diamond tip pressed 2000nm into the hydrated bone tissue. An elastic modulus was calculated from the unloading curve with an assumed Poisson ratio of 0.3, while hardness was defined as the maximal force divided by the corresponding contact area. The mechanical properties of cortical bone were determined from 852 indents on two orthogonal cross-sectional surfaces. Mean elastic modulus ranged from 7.56±0.32 GPa up to 21.56±2.35 GPa, while mean hardness ranged from 0.28±0.057 GPa up to 0.84±0.072 GPa. Mechanical properties of canine femoral cortical bone tended to increase with age, but the magnitudes of these increase for each region might be different. The longitudinal mechanical properties were significantly higher than that of transverse direction (P<0.01). A significant anisotropy was found in the mechanical properties while there was no significant correlation between the two orthogonal directions in each age group (r2<0.3). Beyond that, the longitudinal mechanical properties of the distal region in each age group were lower than the proximal and central regions. Hence, mechanical properties in nanostructure of bone tissue must differ mainly among age, sample direction, anatomical sites, and individuals. These results may help a number of researchers develop more accurate constitutive micromechanics models of bone tissue in future studies.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 34-42 ◽  
Author(s):  
M. TAN ◽  
D. J. LI ◽  
G. Q. LIU ◽  
L. DONG ◽  
X. Y. DENG ◽  
...  

ZrB 2, W , WN x coatings and ZrB 2/ W , ZrB 2/ WN x multilayered coatings have been synthesized by ion beam assisted deposition at room temperature. X-ray diffraction (XRD), XP-2 surface profiler, scanning electron microscopy (SEM) and nano indenter were employed to investigate the influence of modulation periods and N + beam bombardment on microstructure and mechanical properties of the coatings. The low-angle XRD patterns and cross-sectional SEM indicate a well-defined composition modulation and layer structure of the multilayers. The multilayers with modulation periods ranging from 9 to 16 nm without N + bombardment possessed higher hardness and elastic modulus than the rule-of-mixtures value of monolithic ZrB 2 and W coatings. The highest hardness was 24 GPa. N + bombardment to growing multilayers gave a significant contribution to mechanical property enhancement. When modulation period is 9.6 nm, ZrB 2/ WN x multilayer with 200 eV N + bombardment reveals the highest hardness (30.2 GPa) and elastic modulus. This hardest multilayer also showed the improved residual stress and fracture resistance.


Author(s):  
Baoquan Chen ◽  
Junbiao Liu ◽  
xiaoxian li ◽  
Weiqing Chen ◽  
xuehui zhang ◽  
...  

Abstract To enhance surface mechanical properties of 690TT alloy, a surface hardening layer was obtained by ultrasonic surface rolling treatment (USRT) and plasma nitriding (PN). The surface morphology, mechanical properties, wear performances and corrosion performance were investigated by XRD, TEM, using a hardness tester, tensile tester, wear tester and electrochemical workstation in simulated sea water, respectively. The results showed that USRT as the pre-treatment can strengthen the performance of PN treatment samples. The USRT+PN treated sample showed existence of dislocation tangles and twin grains. Corrosion resistance in simulated sea water was enhanced. The surface microhardness increased by 180 % compared with the untreated sample, the cross-sectional hardness gradually decreased till the depth of 1mm. The tensile strength increased by a factor of 90% while the elongation decreased by only 40%. The wear scar was narrower and shallower than the untreated sample and the wear rate was significantly dropped. This paper aims at providing a new method for surface strengthening of 690TT alloy.


Sign in / Sign up

Export Citation Format

Share Document