scholarly journals EIGENMODE OF THE DECISION-BY-MAJORITY PROCESS IN COMPLEX NETWORKS

2008 ◽  
Vol 11 (04) ◽  
pp. 565-579
Author(s):  
MAKOTO UCHIDA ◽  
SUSUMU SHIRAYAMA

The nature of the dynamics of opinion formation or zero-temperature Ising models modeled as a decision-by-majority process in complex networks is investigated using eigenmode analysis. The Hamiltonian of the system is defined and estimated by eigenvectors of the adjacency matrix constructed from several network models. The rule of the process is assumed to be equivalent to the minimization of the Hamiltonian. The initial and final states of the dynamics are decomposed on the basis of the eigenvectors. The process and the eigenmodes are analyzed by numerical studies. We show that the magnitude of the coefficient for the largest eigenvector at the initial states is the key determinant for the resulting dynamics. We thus prove that the final state of the dynamics can be estimated by the eigenmodes of the initial state.

1984 ◽  
Vol 86 ◽  
pp. 128-131
Author(s):  
J.M. Bizau ◽  
F. Wuilleumier ◽  
P. Gerard ◽  
P. Dhez ◽  
B. Carré ◽  
...  

We have begun a program to measure oscillator strengths of autoionizing resonances that result from a transition in the VUV between a laser excited initial state and a final state in which a core electron is promoted. These measurements demonstrate a new technique to combine synchrotron radiation, laser pumping, and photoelectron spectroscopy.Measurements of the energy positions of autoionizing resonances have been honed to a fine art over the past 50 years. Total cross section measurements and the parameters that describe autoionizing resonances have been determined. Most of these studies have been made from the dipole allowed ground state. Recently autoionizing resonances have been observed from excited initial states and from ion initial states. We have heard several talks, at this meeting which described some of this type of research. In the measurements to be described in this paper, laser radiation is combined with synchrotron radiation, as shown schematicaly in Figure 1, to study the photoionization from excited initial states to continuum final states or to autoionizing final states. Continuum radiation from the Aneau de Collisions d’Orsay (ACO), which is installed at the Universite de Paris-Sud, in Orsay France, is monochromatized by a toroidal grating monochromator (TGM) and is focused by a toroidal output mirror on to a weakly collimated sodium beam emanating from a furnace mounted on the axis of a cylinderical mirror analyzer (CMA). This electron spectrometer is used to study the kinetic energy distribution of the ejected photoelectrons produced by the interaction of the photon beam with the focused synchrotron radiation.


While the Stark-effect has not been studied so extensively as the Zeeman-effect, either in the experiments or in their interpretations, many of the more prominent features have been observed and have received adequate explanation on the quantum theory. Among these may be mentioned the patterns characteristic of the different series in the singlet system of parhelium. The variety of observed patterns in the Stark-effect, as contrasted with the normal Zeeman-effect found for all series of this system, arises from a differential action of the external electric field on the initial and final states, and a breaking down of the usual selection rule for the azimuthal quantum number. Some simplification is brought about, however, by the fact that only the absolute value of the quantum number m has any meaning in the interpretation of these photographs, since the action of the field is the same for right or left-handed motion of the outer electron in its orbit. This results in asymmetrical patterns for all the lines. The number of components observed in the patterns of individual lines of parhelium is in accord with the theoretical view that the vector j (here equal to l ) is resolved along the direction of the applied field to give the integral m values ranging from - j to + j , and that the usual selection rule holds for m . The displacements and intensities are in excellent agreement with the theoretical calculations based on the perturbation theory of quantum mechanics. The spacing of the sub-levels identified by ± m in the initial state is decidedly irregular in the Stark-effect as compared with the normal Zeeman-effect, where the displacements are proportional to m . The Zeeman order of the levels is usually reversed, in fact, and the spacing is uneven. Displacements in the final state are theoretically very small, and have not been observed with certainty. In the Stark-effect for orthohelium (triplet system) the same group of patterns was observed. An explanation of these observations, which is slightly less satisfactory than that obtained with parhelium, has been made by similar methods, neglecting the electron spin. Thus the m values were again given ranges determined in each case by the l of the outer electron, and not by the j for the whole atom. Most of the plates failed to reveal any of the fine structure of the normal orthohelium spectrum.


2016 ◽  
Vol 40 ◽  
pp. 1660037 ◽  
Author(s):  
Yuxi Pan

The large transverse single spin asymmetries (SSA) of high [Formula: see text] inclusive hadrons produced in polarized proton collisions are usually explained by means of collinear twist-3 multi-parton correlations. In this picture these asymmetries can originate from initial-state twist-3 parton distributions in the polarized proton and/or through the coupling between proton transversity and twist-3 fragmentation functions. The measurement of SSA for forward inclusive hadrons produced in [Formula: see text] collisions out to high transverse momentum helps to examine the validity and interplay of these initial- and final-state models. These models can be further explored by investigating the dependence of the SSA on event topologies. We present our latest status on the measurement of SSA for forward inclusive [Formula: see text] detected within [Formula: see text] in [Formula: see text] = 500 GeV [Formula: see text] collisions as well as its dependence on event topologies. We will also present our analysis of Sivers and Collins asymmetries for forward jet-like events consisting of multi-photon final states. The measurements are based on the data taken in 2011 with integrated luminosity [Formula: see text] 22 [Formula: see text].


2008 ◽  
Vol 17 (03n04) ◽  
pp. 571-576 ◽  
Author(s):  
PHILIPP A. HÖHN ◽  
SUSAN M. SCOTT

It has long been a primary objective of cosmology to understand the apparent isotropy in our universe and to provide a mathematical formulation for its evolution. A promising school of thought for its explanation is quiescent cosmology, which already possesses a mathematical framework, namely the definition of an isotropic singularity, but only for the initial state of the universe. A complementary framework is necessary in order to also describe possible final states of the universe. Our new definitions of an anisotropic future endless universe and an anisotropic future singularity, whose structure and properties differ significantly from those of the isotropic singularity, offer a promising realization for this framework. The combination of the three definitions together may then provides the first complete formalization of the quiescent cosmology concept.


2019 ◽  
Vol 22 (07n08) ◽  
pp. 1950022 ◽  
Author(s):  
GAOPENG DUAN ◽  
AMING LI ◽  
TAO MENG ◽  
LONG WANG

To promote the implementation of realistic control over various complex networks, recent work has been focusing on analyzing energy cost. Indeed, the energy cost quantifies how much effort is required to drive the system from one state to another when it is fully controllable. A fully controllable system means that the system can be driven by external inputs from any initial state to any final state in finite time. However, it is prohibitively expensive and unnecessary to confine that the system is fully controllable when we merely need to accomplish the so-called target control — controlling a subnet of nodes chosen from the entire network. Yet, when the system is partially controllable, the associated energy cost remains elusive. Here we present the minimum energy cost for controlling an arbitrary subset of nodes of a network. We show the scaling behavior of the precise upper and lower bounds of the minimum energy in terms of the time given to accomplish control. For controlling a given number of target nodes, we further show that the associated energy over different configurations can differ by several orders of magnitude. When the adjacency matrix of the network is nonsingular, we can simplify the framework by just considering the induced subgraph spanned by target nodes instead of the entire network. Importantly, we find that energy cost could be saved by orders of magnitude as we only need the partial controllability of the entire network. Our theoretical results are all corroborated by numerical calculations, and pave the way for estimating the energy cost to implement realistic target control in various applications.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 436
Author(s):  
Antonio Amoroso ◽  
Stefano Bagnasco ◽  
Rinaldo Baldini Ferroli ◽  
Ilaria Balossino ◽  
Monica Bertani ◽  
...  

There are two available sets of data on the e+e−→Λc+Λ¯c− cross section at energies close to the production threshold, collected by the Belle and by the BESIII Collaborations. The measurement of the former, performed by means of the initial state radiation technique, is compatible with the presence of a resonance, called ψ(4660), observed also in other final states. On the contrary, the latter is measured an almost flat and hence non-resonant cross section in the energy region just above the production threshold, but the data stop before the possible rise in the cross section for the resonant production. We propose an effective model to describe the behavior of the data near this threshold, which is based on a Coulomb-like enhancement factor due to the strong interaction among the final state particles. In the framework of this model, it is possible to describe both datasets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


2014 ◽  
Vol 35 ◽  
pp. 1460440
Author(s):  
ALBERTO LUSIANI

We report recent measurements on τ leptons obtained by the BABAR collaboration using the entire recorded sample of electron-positron collisions at and around the Υ(4S) (about 470fb-1). The events were recorded at the PEP-II asymmetric collider at the SLAC National Accelerator Laboratory. The measurements include high multiplicity τ decay branching fractions with 3 or 5 charged particles in the final state, a search for the second class current the τ decay τ → πη′ν, τ branching fractions into final states containing two KS mesons, [Formula: see text], with h = π, K, and preliminary measurements of hadronic spectra of τ decays with three hadrons (τ- → h-h+h-ντ decays, where h = π, K). The results improve the experimental knowledge of the τ lepton properties and can be used to improve the precision tests of the Standard Model.


2001 ◽  
Vol 16 (supp01b) ◽  
pp. 888-890
Author(s):  
◽  
BRUCE KNUTESON

We present a quasi-model-independent search for physics beyond the standard model. We define final states to be studied, and construct a rule that identifies a set of variables appropriate for any particular final state. A new algorithm ("Sleuth") searches for regions of excess in the space of those variables and quantifies the significance of any detected excess. After demonstrating the sensititvity of the method, we apply it to the semi-inclusive channel eμX collected in ≈108 pb -1 of [Formula: see text] collisions at [Formula: see text] at the DØ experiment at the Fermilab Tevatron. We find no evidence of new high pT physics in this sample.


Sign in / Sign up

Export Citation Format

Share Document