PROSPECTS FOR A MOLECULAR SUPERCOMPUTER 15 YEARS AHEAD

2006 ◽  
Vol 05 (04n05) ◽  
pp. 377-382
Author(s):  
YASUO WADA

Current information technologies totally rely on semiconductor devices and magnetic/optical discs, however, they are all foreseen to face fundamental limitations within a decade. Therefore, superseding devices are required for the next paradigm of high performance information technologies. This paper describes prospects for a molecular supercomputer which would be the only possible candidate beyond the silicon limitations. Possible four milestones for realizing the Peta/Exa-floating operations per second (FLOPS) personal molecular supercomputer are proposed. Current status and necessary technologies of the first milestone are described, and necessary technologies for the next three milestones are also discussed.

MRS Bulletin ◽  
1988 ◽  
Vol 13 (8) ◽  
pp. 14-15 ◽  
Author(s):  
Alastair M. Glass

Optical technologies have advanced dramatically in recent years. In just two decades the transparency of optical fibers has improved by four orders of magnitude. Semiconductor lasers have evolved from a new invention to highly reliable, high performance commercial devices for wide bandwidth optical communications. New approaches to higher frequency modulation, wider bandwidth transmission, more sensitive detection and optical amplification are constantly being developed. Fundamental limitations are sufficiently far removed from current capabilities that considerable further progress can be anticipated. These advances have provided the stimulus for a much broader investigation of the potential of optics in future information technologies in which optics and electronics play complementary roles. This rapidly developing field is referred to as “photonics.” Increasing attention is now being paid to applying optics to wide bandwidth switching systems and to exploring the potential of optics for image processing and computation.Past progress in optical communication can be traced largely to the dramatic progress in optical fiber and compound semiconductor materials technologies. Likewise, future opportunities in photonic switching and information processing will depend critically on the development of improved photonic materials. The future role of optics in these conventionally electronic technologies, and the extent of that role, depends on whether materials can be designed and fabricated with the required characteristics.


2020 ◽  
Vol 42 (3) ◽  
pp. 4-17
Author(s):  
John Saunders ◽  
Rusli Lutan

This paper considers the current status of physical education and sport science in Indonesia from the perspective of the development of the professional knowledge base and research culture surrounding its practice. It seeks to place the field’s development within the broader context of international sport studies from 1945 to 2020. It identifies as major influences the process of globalisation and the growth of international sport as a significant political and economic entity. Physical education is acknowledged as a common historical base for the three modern strands within contemporary sports studies – medical /and health science, high performance studies, and sports business management. Future developments are considered in the context of the current pandemic. Covid19 and the world’s response to it has impacted on some key dimensions which underpin the current global sports economy – namely easy and convenient travel and the gathering of crowds in the widespread consumption of live sport. It is suggested that this might cause a major reset in the conduct of elite sport and sport festivals. The continuing growth of the physical activity and health sector is predicted and in the context of the serious challenges facing the sporting sector a case is made for increased resources to be moved back into the educational study and practice of sport and physical activity as a universal good.


2007 ◽  
Vol 54 (6) ◽  
pp. 2714-2726 ◽  
Author(s):  
Hossein Asadi ◽  
Mehdi B. Tahoori ◽  
Brian Mullins ◽  
David Kaeli ◽  
Kevin Granlund

2015 ◽  
Vol 1744 ◽  
pp. 3-13 ◽  
Author(s):  
Kazuya Idemitsu ◽  
Tomofumi Sakuragi

ABSTRACTNuclear reprocessing plants in Japan produce radioactive iodine-bearing materials such as spent silver adsorbents. Japanese disposal plans classify radioactive waste containing a given quantity of iodine-129 as Transuranic Waste Group 1 for spent silver adsorbent or as Group 3 for bitumen-solidified waste, and stipulate that such waste must be disposed of by burial deep underground. Given the long half-life of iodine-129 of 15.7 million years, it is difficult to prevent release of iodine-129 from the waste into the surrounding environment in the long term. Moreover, because ionic iodine is soluble and not readily adsorbed, its migration is not significantly retarded by engineered or natural barriers. The release of iodine-129 from nuclear waste therefore must be restricted to permit reliable safety assessment; this technique is called “controlled release”. It is desirable that the release period for iodine be longer than 100,000 years. To this end, several techniques for immobilization of iodine have been developed; three leading techniques are the use of synthetic rock (alumina matrix solidification), BPI (BiPbO2I) glass, and high-performance cement. Iodine is fixed as AgI in the grain boundary of corundum or quartz through hot isostatic pressing in synthetic rock, as BPI in boron/lead-based glass, or as cement minerals such as ettringite in high-performance alumina cement. These techniques are assessed by three models: the corrosion model, the leaching model, and the solubility-equilibrium model. This paper describes the current status of these three techniques.


2022 ◽  
Vol 41 (1) ◽  
pp. 21-33
Author(s):  
Khairi Mustafa Fahelelbom ◽  
Abdullah Saleh ◽  
Moawia M. A. Al-Tabakha ◽  
Akram A. Ashames

Abstract Qualitative Fourier transform infrared (FTIR) spectroscopy has long been established and implemented in a wide variety of fields including pharmaceutical, biomedical, and clinical fields. While the quantitative applications are yet to reach their full potential, this technique is flourishing. It is tempting to shed light on modern engaging and the applicability of analytical quantitative FTIR spectroscopy in the aforementioned fields. More importantly, the credibility, validity, and generality of the application will be thoroughly demonstrated by reviewing the latest published work in the scientific literature. Utilizing FTIR spectroscopy in a quantitative approach in pharmaceutical, biomedical, and interdisciplinary fields has many undeniable advantages over traditional procedures. An insightful account will be undertaken in this regard. The technique will be introduced as an appealing alternative to common methods such as high performance liquid chromatography. It is anticipated that the review will offer researchers an update of the current status and prospect on the subject among the pharmacy and biomedical sciences both in academic and industrial fields.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1693 ◽  
Author(s):  
Maral Aminpour ◽  
Carlo Montemagno ◽  
Jack A. Tuszynski

In this paper we review the current status of high-performance computing applications in the general area of drug discovery. We provide an introduction to the methodologies applied at atomic and molecular scales, followed by three specific examples of implementation of these tools. The first example describes in silico modeling of the adsorption of small molecules to organic and inorganic surfaces, which may be applied to drug delivery issues. The second example involves DNA translocation through nanopores with major significance to DNA sequencing efforts. The final example offers an overview of computer-aided drug design, with some illustrative examples of its usefulness.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2081 ◽  
Author(s):  
Teddy Tite ◽  
Adrian-Claudiu Popa ◽  
Liliana Balescu ◽  
Iuliana Bogdan ◽  
Iuliana Pasuk ◽  
...  

High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.


Sign in / Sign up

Export Citation Format

Share Document