Low- and High-Frequency C–V Characteristics of Au/n-GaN/n-GaAs

2018 ◽  
Vol 18 (06) ◽  
pp. 1850039
Author(s):  
Abderrezzaq Ziane ◽  
Mohamed Amrani ◽  
Abdelaziz Rabehi ◽  
Zineb Benamara

Au/GaN/GaAs Schottky diode created by the nitridation of n-GaAs substrate which was exposed to a flow of active nitrogen created by a discharge source with high voltage in ultra-high vacuum with two different thicknesses of GaN layers (0.7[Formula: see text]nm and 2.2[Formula: see text]nm), the I–V and capacitance–voltage (C–V) characteristics of the Au/n-GaN/n-GaAs structures were studied for low- and high-frequency at room temperature. The measurements of I–V of the Au/n-GaN/n-GaAs Schottky diode were found to be strongly dependent on bias voltage and nitridation process. The electrical parameters are bound by the thickness of the GaN layer. The capacitance curves depict a behavior indicating the presence of interface state density, especially in the low frequency. The interface states density was calculated using the high- and low-frequency capacitance curves and it has been shown that the interface states density decreases with increasing of nitridation of the GaAs.

1999 ◽  
Vol 573 ◽  
Author(s):  
D. Landheer ◽  
J. E. Hulse ◽  
K. Rajesh

ABSTRACTSilicon nitride was deposited in-situ by electron-cyclotron resonance plasma chemical-vapour deposition (ECR-CVD) on (110) surfaces formed by cleaving GaAs and InP(100) substrates in an ultra-high vacuum processing system. Capacitors formed by depositing Al gates on the facet surfaces were analyzed by the high-low frequency capacitance-voltage (CV) technique. The minimum interface-state densities obtained for the cleaved GaAs (110) surfaces were 1–2 × 1012 eV−1cm−2. For cleaved InP facets the measured minimum interface state densities were a factor of two higher; however, they exhibited a smaller hysteresis in the CV characteristics and a smaller modulation in the surface potential. The interface state densities did not change significantly for the GaAs(110) facets if a Si interface control layer 0.8–2 nm thick was deposited prior to silicon nitride deposition; however, a larger effect was observed for the hysteresis and flatband voltage shift of the CV characteristics. The effect of annealing on the interfaces with Si was investigated and the performance compared with published results for GaAs(100) surfaces prepared by molecular-beam epitaxy.


1989 ◽  
Vol 160 ◽  
Author(s):  
Y.W. Choi ◽  
C.R. Wie ◽  
K.R. Evans ◽  
C.E. Stutz

AbstractDifferent in-plane mismatch was introduced by varying the Ga 0.92In0.08As(p+) epilayer thickness (h-0.1, 0.25, 0.5 and lum) on GaAs(n)/GaAs(n+) structure. For sample with h-lum, quasi-Fermi level pinning effect was observed in low temperature forward Current-Voltage characteristic due to high density misfit dislocation. From Vint measurement at low frequency limit in C-2 vs Voltage plot, interface state density Nss was obtained. From Capacitance-Voltage measurements at different frequencies, single-level interface state density Ns was estimated using Schokley-Read-Hall statistics. Both Nss and Ns show their linear relation with epilayer in-plane mismatch. Admittance Spectroscopy shows an interface trap level at about Ev + 0.36 eV with the hole capture cross section cp = 2.7×10-15 cm-2 for the h-lum sample, and at Ev + 0.21 eV with cP = 2.4×10-16 cm-2 for the h-0.5um sample.


2001 ◽  
Vol 670 ◽  
Author(s):  
T. K. Higman

ABSTRACTCurrent trends in integrated circuit processing project gate insulators with oxide equivalent thicknesses of 1.5 to 1.0 nm. Gate oxides in this thickness range have oxide capacitances of 1 to 5 μF/cm2. When oxide capacitances are this large, traditional high-frequency capacitance-voltage techniques for measuring interface states can be inaccurate. We show that a combination of high and low frequency capacitance-voltage data, along with frequency dependent conductance methods, produce more accurate results.


1997 ◽  
Vol 485 ◽  
Author(s):  
B. G Budaguan ◽  
A. A. Aivazov ◽  
A. A. Sherchenkov ◽  
A. V Blrjukov ◽  
V. D. Chernomordic ◽  
...  

AbstractIn this work a-Si:H/c-Si heterostructures with good electronic properties of a-Si:H were prepared by 55 kHz Plasma Enhanced Chemical Vapor Deposition (PECVD). Currentvoltage and capacitance-voltage characteristics of a-Si:H/c-Si heterostructures were measuredto investigate the influence of low frequency plasma on the growing film and amorphous silicon/crystalline silicon boundary. It was established that the interface state density is low enough for device applications (<2.1010 cm−2). The current voltage measurements suggest that, when forward biased, space-charge-limited current determines the transport mechanism in a- Si:H/c-Si heterostructures, while reverse current is ascribed to the generation current in a-Si:H and c-Si depletion layers.


1986 ◽  
Vol 75 ◽  
Author(s):  
J. R. Swanson ◽  
C. M. Friend ◽  
Y. J. Chabal

AbstractLaser- and electron-assisted deposition of Fe on Si(111)-(7×7) surfaces using decomposition of Fe(CO)5 has been investigated with multiple internal reflection Fourier transform infrared, Auger electron and temperature programmed desorption spectroscopies and low energy electron diffraction under ultra-high vacuum conditions. No thermal reaction was apparent in temperature programmed desorption experiments: only molecular Fe(CO)5 desorption was observed at temperatures of 150 and 170 K, corresponding to desorption energies in the range of 7–10 kcal./mole. Fe(CO)5 decomposition could be induced using either incident 1.6 keV electrons or ultraviolet photons. Significant amounts of carbon were deposited from the electron induced decomposition, consistent with earlier reports on the Si(100) surface. In contrast, ultraviolet photolysis did not result in any detectable incorporation of carbon or oxygen into the iron deposits. No partially decarbonylated Fe(CO)x, x<5, fragments were detected subsequent to exposure to photons using infrared spectroscopy. However, a new, unresolved low frequency shoulder did appear in the infrared spectrum after exposing the Fe(CO)5 covered Si(111)-(7×7) crystal to the electron beam. Iron photodeposition was evident in the Auger electron spectra obtained subsequent to photolysis and annealing of the surface to either 300 K or 1000 K in order to desorb unreacted Fe(CO)5. These data suggest that there are no surface stable Fe(CO)x, x<5, species in the photodeposition process. Instead, photolysis yields Fe atoms directly, even at low temperatures. Annealing to temperatures on the order of 1000 K subsequent to iron deposition resulted in a significant decrease in the Fe:Si ratio as measured by Auger electron spectroscopy. In addition, CO could not be readsorbed on a surface where the Fe(CO)5 had been decomposed. This is attributed to dissolution of Fe into the bulk silicon crystal.


2016 ◽  
Vol 858 ◽  
pp. 469-472 ◽  
Author(s):  
Norimichi Chinone ◽  
R. Kosugi ◽  
Yasunori Tanaka ◽  
Shinsuke Harada ◽  
Hajime Okumura ◽  
...  

SiO2/SiC interface was investigated by using super-higher-order (SHO) scanning nonlinear dielectric microscopy (SNDM) with high spatial resolution. Comparison of non-oxidized and thermally oxidized 4H-SiC wafer (Si-face) revealed that only 5 min oxidation makes the interface quality spatially inhomogeneous. Next four SiC wafers treated under different post oxidation annealing (POA) conditions in NO ambient (three “with” and one “without” POA) were also compared. Using SHO-SNDM, local capacitance-voltage (C-V) curves were obtained. The local C-V curve obtained in sample with POA was more close to ideal C-V curve compared to the C-V curves obtained in the sample without POA. In addition, two-dimensional normalized SNDM images taken on the four SiC wafers were observed, which showed that the spatial deviation of interface state was reduced by the POA treatment. Moreover, standard deviations s of the normalized SNDM images were calculated. Then, very strong correlations between σ and interface-state density Dit as well as channel electron mobility μFE were observed.


Sign in / Sign up

Export Citation Format

Share Document