The Influences of Aqueous Dispersion Media on the Cytotoxic Effect of Zinc Oxide Nanoparticles

2020 ◽  
Vol 19 (05) ◽  
pp. 2050001
Author(s):  
Kim San Tang ◽  
Jey Sern Tan

Zinc oxide nanoparticles (ZnO-NPs) are widely utilized in many applications due to distinct physical and chemical characteristics. There are growing concerns that abundant use of ZnO-NPs can cause harm to humans and the environment. There is a substantial problem with reproducibility in nanotoxicology research due to the inherent properties of nanoparticles. Dispersion media are used for the preparation of nanoparticles. However, the physical and biological behaviors of ZnO-NPs in aqueous dispersion media are poorly understood. In this study, we investigated the effect of ZnO-NPs on the viability of SH-SY5Y cells. Our results showed that ZnO-NPs diluted from water-dispersed stock solution caused significant cell death at a much lower dose compared to their counterpart diluted from the phosphate-buffered saline (PBS)-dispersed stock solution. Electron microscopic data indicated that ZnO-NPs from the PBS-dispersed stock solution form much larger agglomerates compared to the one from the water-dispersed stock solution. From these data, we can conclude that the types of media used for particle dispersion impact the change in the physical property and cytotoxicity of ZnO-NPs.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hasnain Jan ◽  
Muzamil Shah ◽  
Anisa Andleeb ◽  
Shah Faisal ◽  
Aishma Khattak ◽  
...  

The anti-cancer, anti-aging, anti-inflammatory, antioxidant, and anti-diabetic effects of zinc oxide nanoparticles (ZnO-NPs) produced from aqueous leaf extract of Aquilegia pubiflora were evaluated in this study. Several methods were used to characterize ZnO-NPs, including SEM, FTIR, XRD, DLS, PL, Raman, and HPLC. The nanoparticles that had a size of 34.23 nm as well as a strong aqueous dispersion potential were highly pure, spherical or elliptical in form, and had a mean size of 34.23 nm. According to FTIR and HPLC studies, the flavonoids and hydroxycinnamic acid derivatives were successfully capped. Synthesized ZnO-NPs in water have a zeta potential of -18.4 mV, showing that they are stable solutions. The ZnO-NPs proved to be highly toxic for the HepG2 cell line and showed a reduced cell viability of 23.68 ± 2.1 % after 24 hours of ZnO-NP treatment. ZnO-NPs also showed excellent inhibitory potential against the enzymes acetylcholinesterase (IC50: 102 μg/mL) and butyrylcholinesterase (IC50: 125 μg/mL) which are involved in Alzheimer’s disease. Overall, the enzymes involved in aging, diabetes, and inflammation showed a moderate inhibitory response to ZnO-NPs. Given these findings, these biosynthesized ZnO-NPs could be a good option for the cure of deadly diseases such as cancer, diabetes, Alzheimer’s, and other inflammatory diseases due to their strong anticancer potential and efficient antioxidant properties.


2019 ◽  
Vol 20 (7) ◽  
pp. 542-550 ◽  
Author(s):  
Nahla S. El-Shenawy ◽  
Reham Z. Hamza ◽  
Fawziah A. Al-Salmi ◽  
Rasha A. Al-Eisa

Background: Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG). Methods: Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points. Results: The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group. Conclusion: The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 713
Author(s):  
Nina Melnikova ◽  
Alexander Knyazev ◽  
Viktor Nikolskiy ◽  
Peter Peretyagin ◽  
Kseniia Belyaeva ◽  
...  

A design of new nanocomposites of bacterial cellulose (BC) and betulin diphosphate (BDP) pre-impregnated into the surface of zinc oxide nanoparticles (ZnO NPs) for the production of wound dressings is proposed. The sizes of crystalline BC and ZnO NPs (5–25%) corresponded to 5–6 nm and 10–18 nm, respectively (powder X-ray diffractometry (PXRD), Fourier-infrared (FTIR), ultraviolet (UV), atomic absorption (AAS) and photoluminescence (PL) spectroscopies). The biological activity of the wound dressings “BC-ZnO NPs-BDP” was investigated in rats using a burn wound model. Morpho-histological studies have shown that more intensive healing was observed during treatment with hydrophilic nanocomposites than the oleophilic standard (ZnO NPs-BDP oleogel; p < 0.001). Treatment by both hydrophilic and lipophilic agents led to increases in antioxidant enzyme activity (superoxide dismutase (SOD), catalase) in erythrocytes and decreases in the malondialdehyde (MDA) concentration by 7, 10 and 21 days (p < 0.001). The microcirculation index was restored on the 3rd day after burn under treatment with BC-ZnO NPs-BDP wound dressings. The results of effective wound healing with BC-ZnO NPs-BDP nanocomposites can be explained by the synergistic effect of all nanocomposite components, which regulate oxygenation and microcirculation, reducing hypoxia and oxidative stress in a burn wound.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


Author(s):  
Bushra H. Shnawa ◽  
Samir M. Hamad ◽  
Azeez A. Barzinjy ◽  
Payman A. Kareem ◽  
Mukhtar H. Ahmed

AbstractCystic echinococcosis is a public health problem in developing countries that practice sheep breeding extensively. In the current study, the protoscolicidal activity of biosynthesized zinc oxide nanoparticles (ZnO NPs) derived from Mentha longifolia L. leaf extracts was investigated. The resultant ZnO NPs were characterized by means of various analytical techniques, such as ultraviolet–visible (UV–Vis) spectrometry, Fourier transform infrared (FT-IR) spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. The results showed that the ZnO NP had the highest scolicidal activity at 400 ppm concentration after 150 min of exposure time, showing 100% mortality rate. The treated protoscolices exhibited loss of viability with several morphological alterations. Hence, an easy and effective green synthesis of ZnO NPs, with efficient scolicidal potential, is reported in this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pandiyan Amuthavalli ◽  
Jiang-Shiou Hwang ◽  
Hans-Uwe Dahms ◽  
Lan Wang ◽  
Jagannathan Anitha ◽  
...  

AbstractMicrobes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV–vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


Sign in / Sign up

Export Citation Format

Share Document