Low Concentration Synthesis of Super-Amphiphilic Nanoflake ZSM-5 Film with Adjustable Property

NANO ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 2050124
Author(s):  
Fei Tong ◽  
Jie Gong ◽  
Hengfei Qin ◽  
Jinlong Jiang ◽  
Lixiong Zhang

High silica zeolite ZSM-5/glass film was successfully synthesized by an in-situ sol–gel dip-coating process combined with the steam-assisted conversion (SAC) technique with low concentration of the synthesis solution. The resulting zeolite films grown on the glass slide show amphiphilic properties. The growing process and the effect of the concentration of SiO2 in the silica source were examined. The mechanism of the formation of the nanoflake crystals and their wetting behavior was investigated. By simply adding fluorescein in the synthesis solution during the preparation, ZSM-5 films showing luminescence property can be obtained. Furthermore, these ZSM-5 zeolite films are easily modified to exhibit hydrophobic property.

2001 ◽  
Vol 7 (S2) ◽  
pp. 1276-1277
Author(s):  
Y. Akin ◽  
R.E. Goddard ◽  
W. Sigmund ◽  
Y.S. Hascicek

Deposition of highly textured ReBa2Cu3O7−δ (RBCO) films on metallic substrates requires a buffer layer to prevent chemical reactions, reduce lattice mismatch between metallic substrate and superconducting film layer, and to prevent diffusion of metal atoms into the superconductor film. Nickel tapes are bi-axially textured by cold rolling and annealing at appropriate temperature (RABiTS) for epitaxial growth of YBa2Cu3O7−δ (YBCO) films. As buffer layers, several oxide thin films and then YBCO were coated on bi-axially textured nickel tapes by dip coating sol-gel process. Biaxially oriented NiO on the cube-textured nickel tape by a process named Surface-Oxidation- Epitaxy (SEO) has been introduced as an alternative buffer layer. in this work we have studied in situ growth of nickel oxide by ESEM and hot stage.Representative cold rolled nickel tape (99.999%) was annealed in an electric furnace under 4% hydrogen-96% argon gas mixture at 1050°C to get bi-axially textured nickel tape.


2009 ◽  
Vol 421-422 ◽  
pp. 161-164 ◽  
Author(s):  
Hajime Horikawa ◽  
Takashi Ogihara ◽  
Akio Shimomura ◽  
Junko Shimomura

Silica, silica/polymethylmethacrylate (PMMA) hybrid, and silica-particle blend silica films were successfully prepared on polybutylene terephtalate (PBT) substrate by dip coating using perhydropolysilazane (PHPS) as a silica source. The effect of thermal treatment on conversion from PHPS to silica was investigated in detail by scanning electron microscopy and Fourier transform infrared spectroscopy. Mechanical properties of silica and silica/PMMA hybrid thin films also were examined by the pencil scratch hardness tests.


2012 ◽  
Vol 557-559 ◽  
pp. 1960-1963
Author(s):  
Feng Ping Huang ◽  
Jing Jing Sun ◽  
Ying Ge Fan

Uniform and highly adherent thin films of TiO2and Nd-TiO2were deposited on high silica fiber by sol-gel dip coating method in this study. The surface morphology and properties of synthesized composites films were characterized by XRD, SEM, TEM and XPS. The photocatalytic reactivity studies of TiO2and Nd-TiO2films were evaluated by photodegradation of the methyl orange (MO) under ultraviolet irradiation. The results shown that neodymium doped TiO2films have higher photodegradation efficiency than that pure TiO2films. The photocatalyst on high silica fiber have a higher photocatalytic activity compare to the glass due to it is light-guide fiber.


2018 ◽  
Vol 64 (5) ◽  
pp. 507
Author(s):  
E Cedeño ◽  
J. Plazas-Saldaña ◽  
F. Gordillo-Delgado ◽  
A. Bedoya ◽  
Ernesto Marin

In this work, we describe the application of a micro-spatial thermal lens spectroscopy setup (thermal lens microscope, TLM) with coaxial counter-propagating pump and probe laser beams and an integrated passive optical Fabry-Perot to quantify the Cr-VI concentration in water during a photocatalytic reaction in-situ. A series of test samples was analyzed using the 1,5 diphenil carbazide colorimetric method. A calibration curve was obtained by plotting of the TLM signal as a function of the concentration of Cr(VI) in a range between 0 and 10 μg/L (1 μg/L = 1 ppb, part per billion), with a detection limit of 53 ng/L (1 ng/L = 1 ppt, part per trillion). A solution of 10 μg/L Cr(VI) in distillated water was placed into a cell in contact with an iron-incorporated titanium dioxide film, which was previously grown onto a 1 mm thick glass microscope slide by the sol-gel dip-coating technique. The TLM signal was registered as a function of the photocatalysis time measured from the beginning of the process, radiating the film with UV-violet light. The Cr(VI) concentration was determined with the calibration curve and after the first 50 minutes a reduction of 95 % of Cr(VI) was observed, being the chemical reaction kinetic described by a potential time decreasing function.


2000 ◽  
Vol 628 ◽  
Author(s):  
Kazuki Nakanishi ◽  
Souichi Kumon ◽  
Kazuyuki Hirao ◽  
Hiroshi Jinnai

ABSTRACTMacroporous silicate thick films were prepared by a sol-gel dip-coating method accompanied by the phase separation using methyl-trimethoxysilane (MTMS), nitric acid and dimethylformamide (DMF) as starting components. The morphology of the film varied to a large extent depending on the time elapsed after the hydrolysis until the dipping of the coating solution. On a glass substrate, the films prepared by early dipping had inhomogeneous submicrometer-sized pores on the surface of the film. At increased reaction times, relatively narrow sized isolated macropores were observed and their size gradually decreased with the increase of reaction time. On a polyester substrate, in contrast, micrometer-sized isolated spherical gel domains were homogeneously deposited by earlier dippings. With an increase of reaction time, the volume fraction of the gel phase increased, then the morphology of the coating transformed into co-continuous gel domains and macropores, and finally inverted into the continuous gel domains with isolated macropores. The overall morphological variation with the reaction time was explained in terms of the phase separation and the structure freezing by the forced gelation, both of which were induced by the evaporation of methanol during the dipping operation.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1554
Author(s):  
Justinas Januskevicius ◽  
Zivile Stankeviciute ◽  
Dalis Baltrunas ◽  
Kęstutis Mažeika ◽  
Aldona Beganskiene ◽  
...  

In this study, an aqueous sol-gel synthesis method and subsequent dip-coating technique were applied for the preparation of yttrium iron garnet (YIG), yttrium iron perovskite (YIP), and terbium iron perovskite (TIP) bulk and thin films. The monophasic highly crystalline different iron ferrite powders have been synthesized using this simple aqueous sol-gel process displaying the suitability of the method. In the next step, the same sol-gel solution was used for the fabrication of coatings on monocrystalline silicon (100) using a dip-coating procedure. This resulted, likely due to substrate surface influence, in all coatings having mixed phases of both garnet and perovskite. Thermogravimetric (TG) analysis of the precursor gels was carried out. All the samples were investigated by X-ray powder diffraction (XRD) analysis. The coatings were also investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Mössbauer spectroscopy. Magnetic measurements were also carried out.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Jie Yu ◽  
Angel Caravaca ◽  
Chantal Guillard ◽  
Philippe Vernoux ◽  
Liang Zhou ◽  
...  

Indoor toxic volatile organic compounds (VOCs) pollution is a serious threat to people’s health and toluene is a typical representative. In this study, we developed a composite photocatalyst of carbon nitride quantum dots (CNQDs) in situ-doped TiO2 inverse opal TiO2 IO for efficient degradation of toluene. The catalyst was fabricated using a sol-gel method with colloidal photonic crystals as the template. The as-prepared catalyst exhibited excellent photocatalytic performance for degradation of toluene. After 6 h of simulated sunlight irradiation, 93% of toluene can be converted into non-toxic products CO2 and H2O, while only 37% of toluene is degraded over commercial P25 in the same condition. This greatly enhanced photocatalytic activity results from two aspects: (i) the inverse opal structure enhances the light harvesting while providing adequate surface area for effective oxidation reactions; (ii) the incorporation of CNQDs in the framework of TiO2 increases visible light absorption and promotes the separation of photo-generated charges. Collectively, highly efficient photocatalytic degradation of toluene has been achieved. In addition, it can be expanded to efficient degradation of organic pollutants in liquid phase such as phenol and Rhodamine B. This study provides a green, energy saving solution for indoor toxic VOCs removal as well as for the treatment of organic wastewater.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Dong Tian ◽  
Yonghong Chen ◽  
Xiaoyong Lu ◽  
Yihan Ling ◽  
Bin Lin

An environmentally friendly method was proposed to prepare mesoporous Mobil Composition of Matter No.48 (MCM-48) using fly ash as the silica source. Silver nanoparticles were infiltrated on MCM-48 facilely by an in situ post-reduction method and evaluated as an effective catalyst for CO oxidation. The as-prepared MCM-48 and Ag/MCM-48 nanoparticles were characterized by XRD, N2 adsorption/desorption, and TEM. Investigations by means of XPS for Ag/MCM-48 were performed in order to illuminate the surface composition of the samples. Studies revealed the strong influence of the loading of Ag nanoparticles on catalysts in the oxidation of CO. CO conversion values for Ag/MCM-48 of 10% and 100% were achieved at temperatures of 220 °C and 270 °C, respectively, indicating that the Ag-decorated MCM-48 catalyst is extremely active for CO oxidation.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 243
Author(s):  
Diana Horkavcová ◽  
Quentin Doubet ◽  
Gisèle Laure Lecomte-Nana ◽  
Eva Jablonská ◽  
Aleš Helebrant

The sol-gel method provides a wide variety of applications in the medical field. One of these applications is the formation of coatings on the metal implants. The coatings containing specific additive can enhance or improve the existing surface properties of the substrate. In this work, titania sol-gel coatings were doped with two forms of silver (AgNO3, Ag3PO4) and synthetic hydroxyapatite and applied on the titanium samples by dip-coating technique. After drying and slow firing, all coatings were characterized with scanning electron microscopy. Thin coatings were successfully prepared with excellent adhesion to the substrate (measured by ASTM D 3359-2), despite cracks. Coatings containing silver and hydroxyapatite demonstrated a 100% antibacterial effect against Escherichia coli after 24 h. The bioactivity of the coatings containing hydroxyapatite tested in modified simulated body fluid under static-dynamic conditions was confirmed by bone-like hydroxyapatite precipitation. To better understand the interaction of the coatings with simulated body fluid (SBF), changes of Ca2+ and (PO4)3− ions concentrations and pH values were studied.


Sign in / Sign up

Export Citation Format

Share Document