The seismogenic fault system of the Mw 6.4, November 2019 Albania earthquake: new insights into the structural architecture and active tectonic setting of the outer Albanides

2020 ◽  
pp. jgs2020-193
Author(s):  
Simone Teloni ◽  
Chiara Invernizzi ◽  
Stefano Mazzoli ◽  
Pietro Paolo Pierantoni ◽  
Vincenzo Spina

A seismic sequence that affected the Durrës region in late 2019 to early 2020 sheds new light into the structural architecture and active tectonic setting of the northern outer Albanides. Stress inversion analysis using the focal mechanisms confirms that the area is dominated by ENE trending, horizontal maximum compression. Seismogenic sources consist mainly of ENE dipping thrust faults roughly parallel to the coastline. Hypocentre distribution indicates that most of the earthquakes, including the Mw = 6.4 main shock, nucleated within the basement, while only some of the shallow aftershocks tend to cluster around the deeper portion of previously identified seismogenic structures within the sedimentary cover. Our results, unravelling for the first time the fundamental role of deeply rooted, crustal ramp-dominated thrusting in seismogenesis, imply a profound reconsideration of the seismotectonic setting of the region in view of a correct assessment of seismic hazard in this densely populated area of Albania.

2021 ◽  
Author(s):  
Silvia Balzan ◽  
Antonio Caracausi ◽  
Giacomo Ferretti ◽  
Anna Saroni ◽  
Giovanni Martinelli ◽  
...  

<p>In this study the geochemical composition of the fluids belonging to the geothermic reservoir of Casaglia is presented. The site is located few kilometers northward of Ferrara, probably the only city in Italy whose heating system is fed by the geothermal heat near the top of the Dorsale Ferrarese, a structural anticline raising the Mesozoic limestones up to few hundred meters below the surface. Measurements of the chemical and isotopic composition of the gas phase (e.g., CO<sub>2</sub> and noble gas) were carried out, together with a full characterization of the physico-chemical parameters and the chemistry of the water phase.</p><p>Fluids derive from a well at a depth of about 322+15meters and the temperature of the emerging water is of 78,6 °C, pH of 6.29 and Eh of -470 mV. Salinity is up to 115.6 mS/cm with a TDS varying between 71024 mg/L and 73718 mg/L. The hydrochemical facies is identified as clorurato-alkaline and the Cl/Br ratio suggest mixing with fossil brines. dD and d<sup>18</sup>O vary from 4.70 to 5.02 and from -12.0 to -12.2 respectively. The volatile phase is mainly composed of N<sub>2</sub> (24.9-40.5 %),<sub></sub>CH<sub>4</sub> (21.1-29.5 %) and CO<sub>2</sub> (37.1-18.6 %), with d<sup>13</sup>C(CO<sub>2</sub>), d<sup>13</sup>C(CH<sub>4</sub>) and dD(CH<sub>4</sub>) varying from -4.4 to -3.7 ‰, from -41.7 to 41.2 ‰ and from -152 to -171 ‰, respectively.  The He amounts are extraordinary high (up to 3956 ppm)  with a <sup>3</sup>He/<sup>4</sup>He of 0.02Ra unequivocally pointing to a crustal origin (e.g., Caracausi & Sulli, 2019). The <sup>40</sup>Ar/<sup>36</sup>Ar ratios span the range 300-374, being very close to the same ratio in atmosphere.</p><p>Such high He concentration cannot be explained by a simple steady-state crustal degassing, taking into account the Th and U contents of the sedimentary cover and the metamorphic basement (Coltorti et al. 2011) which lead also to consider that the thermal state of the Casaglia reservoir involve the entire crustal thickness and not only the Mesozoic carbonate succession that hosts the reservoir itself.</p><p>It is inferred that under an active tectonic regime, as it is that where Casaglia is located, the formation of micro-fracturation, due to the field of stress generated by the local seismicity, increases the He release from the rocks and can contribute to the observed He excess in the geothermal reservoirs (e.g., Buttitta et al., 2020). In this respect, the fault system of Dorsale Ferrarese contributes to generate a preferential pathway for rising fluids with consequent mixing phenomena and provides a reasonable explanation about the presence of this high He content in the reservoir.</p><p>References:</p><p>Buttitta D. et al. (2020). Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Scientific Reports, 10(1), 1–13.</p><p>Caracausi A. & Sulli A. (2019). Outgassing of Mantle Volatiles in Compressional Tectonic Regime Away From Volcanism: The Role of Continental Delamination. Geochemistry, Geophysics, Geosystems, 20(4), 2007–2020.</p><p>Coltorti M. et al. 2011. U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS. Geoch. Cosmoch. Acta 75, 2271-2294.</p>


2018 ◽  
Author(s):  
Stefano Tavani ◽  
Mariano Parente ◽  
Francesco Puzone ◽  
Amerigo Corradetti ◽  
Gholamreza Gharabeigli ◽  
...  

Abstract. The 2017 Mw Iran-Iraq earthquake occurred in a region where the pattern of major plate convergence is well constrained, but limited information is available on the seismogenic structures. Geological observations, interpretation of seismic reflection profiles, and well data are used in this paper to build a regional balanced cross-section that provides a comprehensive picture of the geometry and dimensional parameters of active faults in the hypocentral area. Our results indicate: (i) coexistence of thin- and thick-skinned thrusting, (ii) reactivation of inherited structures, and (iii) occurrence of weak units promoting heterogeneous deformation within the Paleo-Cenozoic sedimentary cover and partial decoupling from the underlying basement. According to our study, the main shock of the November 2017 seismic sequence is located within the basement, along the low-angle Mountain Front Fault. Aftershocks unzipped the up-dip portion of the same fault. This merges with a detachment level located at the base of the Paleozoic succession, to form a crustal-scale fault-bend anticline. Size and geometry of the Mountain Front Fault are consistent with a down-dip rupture width of 30 km, which is required for an Mw 7.3 earthquake.


Solid Earth ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 821-831 ◽  
Author(s):  
Stefano Tavani ◽  
Mariano Parente ◽  
Francesco Puzone ◽  
Amerigo Corradetti ◽  
Gholamreza Gharabeigli ◽  
...  

Abstract. The 2017 Mw 7.3 Iran–Iraq earthquake occurred in a region where the pattern of major plate convergence is well constrained, but limited information is available on the seismogenic structures. Geological observations, interpretation of seismic reflection profiles, and well data are used in this paper to build a regional, balanced cross section that provides a comprehensive picture of the geometry and dimensional parameters of active faults in the hypocentral area. Our results indicate (i) the coexistence of thin- and thick-skinned thrusting, (ii) the reactivation of inherited structures, and (iii) the occurrence of weak units promoting heterogeneous deformation within the palaeo-Cenozoic sedimentary cover and partial decoupling from the underlying basement. According to our study, the main shock of the November 2017 seismic sequence is located within the basement, along the low-angle Mountain Front Fault. Aftershocks unzipped the up-dip portion of the same fault. This merges with a detachment level located at the base of the Paleozoic succession, to form a crustal-scale fault-bend anticline. Size and geometry of the Mountain Front Fault are consistent with a down-dip rupture width of 30 km, which is required for an Mw 7.3 earthquake.


2021 ◽  
Author(s):  
Simone Teloni ◽  
Chiara Invernizzi ◽  
Stefano Mazzoli ◽  
Pietro Paolo Pierantoni ◽  
Vincenzo Spina

<p>Fault geometries are usually reconstructed through seismic data, which can provide a very good image of the subsurface. However, the recognition of deep structures is often difficult for the shallow depth of these data and their low resolution in depth. On the contrary, recent earthquakes and their parameters (e.g. hypocentre, focal mechanism, magnitude, etc.) may have an important role in better understanding deep features, outlining the active crustal structures.</p><p>November 26<sup>th</sup> 2019 a 6.4 M<sub>w</sub> Durres earthquake struck the Albanian coastal area, claiming 51 victims and hundreds of injured people. This seismic sequence sheds new light into the structural architecture and active tectonic setting of the northern outer Albanides. Stress field analysis performed through local mechanisms of the main seismic events of the sequence and those recorded since 1997 by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) confirm that the area is dominated by ENE trending, horizontal maximum compression, with a ENE dipping thrust faults roughly parallel to the coastline. Further analysis to investigate the structural architecture of this area was conducted plotting hypocentre distribution which show that shallower hypocentres tend to cluster around the deeper portion of projected fault segment proposed by the DISS ‘composite seismogenic source’ labelled ALCS002, whereas most of the seismic events including the Mw = 6.4 main shock are nucleated within the crystalline basement. This result unravels for the first time the fundamental role of deeply rooted, crustal ramp-dominated thrusting in seismogenesis, implying a profound reconsideration of the seismotectonic setting of the region.</p><p>The outcomes of this study show here that the recent earthquakes are pivotal in outlining the active crustal frontal structure of the thrust belt, providing new fundamental constraints, not only on the active tectonic setting of the region, but also on the crustal architecture of the outer Albanides. In this regard, the identification of such deep seismogenic sources and the definition of their dimensional parameters may have major implications on the correct assessment of the seismic hazard, especially for this large and densely populated area of Albania. Furthermore, the evidence provided in this study for a deep seismogenic thrust system in a foreland basin setting may be of general interest in similar tectonic contexts worldwide, where deep structures are possibly unidentified, and may represent a weakness in seismic hazard assessment.</p>


2020 ◽  
Author(s):  
Michał Jakubowicz ◽  
Steffen Kiel ◽  
James Goedert ◽  
Jolanta Dopieralska ◽  
Zdzislaw Belka

<p>Stratigraphic and structural context of the early evolution of the Cascadia convergent margin, following major subduction reconfiguration associated with accretion of the igneous Siletzia terrane at 50−45 Ma, remains insufficiently understood. Here, we have applied a novel approach that uses combined Nd, Sr and stable isotope analyses of ancient methane-seep carbonates to constrain the early hydrogeological regime of the Cascadia margin. Analyses included the oldest-known seep deposits of Cascadia, formed during mid-Eocene time (42.5−40.5 Ma). A combination of exceptionally high ε<sub>Nd</sub> and low <sup>87</sup>Sr/<sup>86</sup>Sr signatures observed in these carbonates consistently point to former interactions between the seeping fluids and mafic, igneous constituents of the forearc basement. Moderately negative δ<sup>13</sup>C<sub>carbonate</sub> values imply thermogenic origin of hydrocarbons at three out of four studied seeps, with likely contribution of biogenic methane at a single, landward-most site. When combined with structural constraints, the recorded signals point to discharges of fluids originating from deep portions of the young subduction wedge, and their channeled ascent through the Siletzia terrane. The results document the presence of a fluid expulsion system indicative of active convergence prior to maturation of typical arc magmatism in the Cascades at 40 Ma. The exceptionally pronounced role of exotic, <sup>143</sup>Nd-enriched, <sup>87</sup>Sr- and <sup>18</sup>O-depleted fluids recorded for early Cascadia reflects its distinctive structural architecture, including the relatively thin sedimentary cover of the young forearc, its extensional tectonics, and the near-trench position of the volcanic terrane that the descending plate-derived fluids must have migrated through prior to reaching the seafloor. </p>


1997 ◽  
Vol 40 (5) ◽  
Author(s):  
A. Amato ◽  
C. Chiarabba ◽  
G. Selvaggi

The first modern studies of seismicity in Italy date back to the late 60's and early 70's. Although with a sparse seismic network available and only a few telemetered short-period stations, significant studies were carried out that outlined the main features of Italian seismicity (see, e.g., Boschi et al., 1969). Among these studies, one of the most important achievements was the reconnaissance of a Wadati-Benioff zone in Southern Tyrrhenian, described for the first time in detail in the papers of Caputo et al.(1970, 1973). Today, after three decades of more and more detailed seismological monitoring of the Italian region and tens of thousands earthquakes located since then, the knowledge of the earthquake generation processes in our country is much improved, although some of the conclusions reached in these early papers still hold. These improvements were made possible by the efforts of many institutions and seismologists who have been working hard to bring seismological research in Italy to standards of absolute quality, under the pivoting role of the Istituto Nazionale di Geofisica (ING). From the relocation of about 30000 crustal earthquakes and detailed studies on intermediate and deep shocks carried out in the last few years, we show that seismic release in peninsular Italy is only weakly related to the Africa-Eurasia convergence, but rather is best explained by the existence of two separate subduction/collision arcs (Northern Apennines and Southern Apennines-Calabria-Sicily). The width of the deforming belt running along peninsular Italy is 30 to 60 km, it is broader in the north than in the south, and the two arcs are separated by a region of more distributed deformation and stress rotations in the Central Apennines. Along the belt, the reconnaissance of regions of continuous and weak release of seismic energy, adjacent to fault areas which are currently «locked» (and therefore are the best candidates for future earthquakes) is another recent important achievement of the prolonged detailed seismic monitoring of our territory, which will provide in the future more and more precise indications of where earthquakes will strike. In addition, the accurate location of hundreds of intermediate and deep earthquakes beneath the two arcs has recently provided (together with seismic tomography results) new hints on the tectonic setting of Italy and its evolution over time, on the relations between deep processes and crustal stress, and ultimately on the mechanisms of earthquake generation in our country.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dario Buttitta ◽  
Antonio Caracausi ◽  
Lauro Chiaraluce ◽  
Rocco Favara ◽  
Maurizio Gasparo Morticelli ◽  
...  

Crisis ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 130-139 ◽  
Author(s):  
Danica W. Y. Liu ◽  
A. Kate Fairweather-Schmidt ◽  
Richard Burns ◽  
Rachel M. Roberts ◽  
Kaarin J. Anstey

Abstract. Background: Little is known about the role of resilience in the likelihood of suicidal ideation (SI) over time. Aims: We examined the association between resilience and SI in a young-adult cohort over 4 years. Our objectives were to determine whether resilience was associated with SI at follow-up or, conversely, whether SI was associated with lowered resilience at follow-up. Method: Participants were selected from the Personality and Total Health (PATH) Through Life Project from Canberra and Queanbeyan, Australia, aged 28–32 years at the first time point and 32–36 at the second. Multinomial, linear, and binary regression analyses explored the association between resilience and SI over two time points. Models were adjusted for suicidality risk factors. Results: While unadjusted analyses identified associations between resilience and SI, these effects were fully explained by the inclusion of other suicidality risk factors. Conclusion: Despite strong cross-sectional associations, resilience and SI appear to be unrelated in a longitudinal context, once risk/resilience factors are controlled for. As independent indicators of psychological well-being, suicidality and resilience are essential if current status is to be captured. However, the addition of other factors (e.g., support, mastery) makes this association tenuous. Consequently, resilience per se may not be protective of SI.


2018 ◽  
pp. 1060-1068
Author(s):  
Galina A. Dvoenosova ◽  

The article assesses synergetic theory of document as a new development in document science. In information society the social role of document grows, as information involves all members of society in the process of documentation. The transformation of document under the influence of modern information technologies increases its interest to representatives of different sciences. Interdisciplinary nature of document as an object of research leads to an ambiguous interpretation of its nature and social role. The article expresses and contends the author's views on this issue. In her opinion, social role of document is incidental to its being a main social tool regulating the life of civilized society. Thus, the study aims to create a scientific theory of document, explaining its nature and social role as a tool of social (goal-oriented) action and social self-organization. Substantiation of this idea is based on application of synergetics (i.e., universal theory of self-organization) to scientific study of document. In the synergetic paradigm, social and historical development is seen as the change of phases of chaos and order, and document is considered a main tool that regulates social relations. Unlike other theories of document, synergetic theory studies document not as a carrier and means of information transfer, but as a unique social phenomenon and universal social tool. For the first time, the study of document steps out of traditional frameworks of office, archive, and library. The document is placed on the scales with society as a global social system with its functional subsystems of politics, economy, culture, and personality. For the first time, the methods of social sciences and modern sociological theories are applied to scientific study of document. This methodology provided a basis for theoretical vindication of nature and social role of document as a tool of social (goal-oriented) action and social self-organization. The study frames a synergetic theory of document with methodological foundations and basic concepts, synergetic model of document, laws of development and effectiveness of document in the social continuum. At the present stage of development of science, it can be considered the highest form of theoretical knowledge of document and its scientific explanatory theory.


2020 ◽  
Author(s):  
Armand Chatard ◽  
Margaux Renoux ◽  
Jean Monéger ◽  
Leila Selimbegovic

Research indicates that individuals often deal with mortality salience by affirming beliefs in national or cultural superiority (worldview defense). Because worldview defense may be associated with negative consequences (discrimination), it is important to identify alternative means to deal with death-related thoughts. In line with an embodied terror management perspective, we evaluate for the first time the role of physical warmth in reducing defensive reaction to mortality salience. We predicted that, like social affiliation (social warmth), physical warmth could reduce worldview defense when mortality is salient. In this exploratory (preregistered) study, 202 French participants were primed with death-related thoughts, or an aversive control topic, in a heated room or a non-heated room. The main outcome was worldview defense (ethnocentric bias). We found no main effect of mortality salience on worldview defense. However, physical warmth reduced worldview defense when mortality was salient. Implications for an embodied terror management perspective are discussed.


Sign in / Sign up

Export Citation Format

Share Document