Plant Cell Polarity: Creating Diversity from Inside the Box

2019 ◽  
Vol 35 (1) ◽  
pp. 309-336 ◽  
Author(s):  
Andrew Muroyama ◽  
Dominique Bergmann

Cell polarity in plants operates across a broad range of spatial and temporal scales to control processes from acute cell growth to systemic hormone distribution. Similar to other eukaryotes, plants generate polarity at both the subcellular and tissue levels, often through polarization of membrane-associated protein complexes. However, likely due to the constraints imposed by the cell wall and their extremely plastic development, plants possess novel polarity molecules and mechanisms highly tuned to environmental inputs. Considerable progress has been made in identifying key plant polarity regulators, but detailed molecular understanding of polarity mechanisms remains incomplete in plants. Here, we emphasize the striking similarities in the conceptual frameworks that generate polarity in both animals and plants. To this end, we highlight how novel, plant-specific proteins engage in common themes of positive feedback, dynamic intracellular trafficking, and posttranslational regulation to establish polarity axes in development. We end with a discussion of how environmental signals control intrinsic polarity to impact postembryonic organogenesis and growth.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi-Jen Sun ◽  
Fan Bai ◽  
An-Chi Luo ◽  
Xiang-Yu Zhuang ◽  
Tsai-Shun Lin ◽  
...  

AbstractThe dynamic assembly of the cell wall is key to the maintenance of cell shape during bacterial growth. Here, we present a method for the analysis of Escherichia coli cell wall growth at high spatial and temporal resolution, which is achieved by tracing the movement of fluorescently labeled cell wall-anchored flagellar motors. Using this method, we clearly identify the active and inert zones of cell wall growth during bacterial elongation. Within the active zone, the insertion of newly synthesized peptidoglycan occurs homogeneously in the axial direction without twisting of the cell body. Based on the measured parameters, we formulate a Bernoulli shift map model to predict the partitioning of cell wall-anchored proteins following cell division.


Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Peilei Chen ◽  
Valentino Giarola ◽  
Dorothea Bartels

Abstract Main conclusion The cell wall protein CpWAK1 interacts with pectin, participates in decoding cell wall signals, and induces different downstream responses. Abstract Cell wall-associated protein kinases (WAKs) are transmembrane receptor kinases. In the desiccation-tolerant resurrection plant Craterostigma plantagineum, CpWAK1 has been shown to be involved in stress responses and cell expansion by forming a complex with the C. plantagineum glycine-rich protein1 (CpGRP1). This prompted us to extend the studies of WAK genes in C. plantagineum. The phylogenetic analyses of WAKs from C. plantagineum and from other species suggest that these genes have been duplicated after species divergence. Expression profiles indicate that CpWAKs are involved in various biological processes, including dehydration-induced responses and SA- and JA-related reactions to pathogens and wounding. CpWAK1 shows a high affinity for “egg-box” pectin structures. ELISA assays revealed that the binding of CpWAKs to pectins is modulated by CpGRP1 and it depends on the apoplastic pH. The formation of CpWAK multimers is the prerequisite for the CpWAK–pectin binding. Different pectin extracts lead to opposite trends of CpWAK–pectin binding in the presence of Ca2+ at pH 8. These observations demonstrate that CpWAKs can potentially discriminate and integrate cell wall signals generated by diverse stimuli, in concert with other elements, such as CpGRP1, pHapo, Ca2+[apo], and via the formation of CpWAK multimers.


2019 ◽  
Author(s):  
Barbara Ervens ◽  
Pierre Amato

Abstract. Many recent studies have identified biological material as a major fraction of ambient aerosol loading. A small fraction of these bioaerosols consist of bacteria that have attracted a lot of attention due to their role in cloud formation and adverse health effects. Current atmospheric models consider bacteria as inert quantities and neglect cell growth and multiplication. We provide here a framework to estimate the production of secondary biological aerosol (SBA) mass in clouds by microbial cell growth and multiplication. The best estimate of SBA formation rates of 3.7 Tg yr-1 are comparable to previous model estimates of the primary emission of bacteria into the atmosphere, and thus might represent a previously unrecognized source of biological aerosol material. We discuss in detail the large uncertainties associated with our estimates based on the rather sparse available data on bacteria abundance, growth conditions and properties. Additionally, the loss of water-soluble organic carbon (WSOC) due to microbial processes in cloud droplets has been suggested to compete under some conditions with WSOC loss by chemical (OH) reactions. Our estimates suggest that microbial and chemical processes might lead to a global loss of WSOC of 8–11 Tg yr-1 and 8–20 Tg yr-1, respectively. While also this estimate is very approximate, the analysis of the uncertainties and ranges of all parameters gives hints about the conditions under which microbial processes cannot be neglected as organic carbon sinks in clouds. Our estimates also highlight the urgent needs for more data concerning microbial concentrations, fluxes and activity in the atmosphere to evaluate the role of bacterial processes as net aerosol sink or source on various spatial and temporal scales.


2019 ◽  
Author(s):  
Jeanine Rismondo ◽  
Sven Halbedel ◽  
Angelika Gründling

AbstractRod-shaped bacteria have two modes of peptidoglycan synthesis: lateral synthesis and synthesis at the cell division site. These two processes are controlled by two macromolecular protein complexes, the elongasome and divisome. Recently, it has been shown that theBacillus subtilisRodA protein, which forms part of the elongasome, has peptidoglycan glycosyltransferase activity. The cell division specific RodA homolog FtsW fulfils a similar role at the divisome. The human pathogenListeria monocytogenesencodes up to six FtsW/RodA homologs, however their functions have not yet been investigated. Analysis of deletion and depletion strains led to the identification of the essential cell division-specific FtsW protein, FtsW1. Interestingly,L. monocytogenesencodes a second FtsW protein, FtsW2, which can compensate for the lack of FtsW1, when expressed from an inducible promoter.L. monocytogenesalso possesses three RodA homologs, RodA1, RodA2 and RodA3 and their combined absence is lethal. Cells of arodA1/rodA3double mutant are shorter and have increased antibiotic and lysozyme sensitivity, probably due to a weakened cell wall. Results from promoter activity assays revealed that expression ofrodA3andftsW2is induced in the presence of antibiotics targeting penicillin binding proteins. Consistent with this, arodA3mutant was more susceptible to the β-lactam antibiotic cefuroxime. Interestingly, overexpression of RodA3 also led to increased cefuroxime sensitivity. Our study highlights thatL. monocytogenesencodes a multitude of functional FtsW and RodA enzymes to produce its rigid cell wall and that their expression needs to be tightly regulated to maintain growth, cell division and antibiotic resistance.ImportanceThe human pathogenListeria monocytogenesis usually treated with high doses of β-lactam antibiotics, often combined with gentamicin. However, these antibiotics only act bacteriostatically onL. monocytogenesand the immune system is needed to clear the infection. Therefore, individuals with a compromised immune system are at risk to develop a severe form ofListeriainfection, which can be fatal in up to 30% of cases. The development of new strategies to treatListeriainfections is therefore necessary. Here we show that the expression of some of the FtsW and RodA enzymes ofL. monocytogenesis induced by the presence of β-lactam antibiotics and their combined absence makes bacteria more susceptible to this class of antibiotics. The development of antimicrobials that inhibit the activity or production of FtsW/RodA enzymes might therefore help to improve the treatment ofListeriainfections and thereby lead to a reduction in mortality.


2017 ◽  
Author(s):  
Hassiba Belahbib ◽  
Emmanuelle Renard ◽  
Sébastien Santini ◽  
Cyril Jourda ◽  
Jean-Michel Claverie ◽  
...  

AbstractThe emergence of epithelia was the foundation of metazoan expansion. To investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologs in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologs of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore ortholog exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners. These unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia.SIGNIFICANT STATEMENTEpithelial tissues are a hallmark of metazoans deeply linked to the evolution of the complex morphogenesis processes characterizing their development. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution. In this work, we demonstrate that if sponges have a well conserved and functionally predicted epithelial toolkit, Ctenophores have either divergent adhesion complexes or lack essential polarity complexes. Altogether, our results raise a doubt on the homology of protein complexes and structures involved in cell polarity and adhesive type junctions between Ctenophora and Bilateria epithelia.


2011 ◽  
Vol 75 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Mariusz Pietruszka ◽  
Sylwia Lewicka ◽  
Krystyna Pazurkiewicz-Kocot

The time-irreversible cell enlargement of plant cells at a constant temperature results from two independent physical processes, e.g. water absorption and cell wall yielding. In such a model cell growth starts with reduction in wall stress because of irreversible extension of the wall. The water absorption and physical expansion are spontaneous consequences of this initial modification of the cell wall (the juvenile cell vacuolate, takes up water and expands). In this model the irreversible aspect of growth arises from the extension of the cell wall. Such theory expressed quantitatively by time-dependent growth equation was elaborated by Lockhart in the 60's.The growth equation omit however a very important factor, namely the environmental temperature at which the plant cells grow. In this paper we put forward a simple phenomenological model which introduces into the growth equation the notion of temperature. Moreover, we introduce into the modified growth equation the possible influence of external growth stimulator or inhibitor (phytohormones or abiotic factors). In the presence of such external perturbations two possible theoretical solutions have been found: the linear reaction to the application of growth hormones/abiotic factors and the non-linear one. Both solutions reflect and predict two different experimental conditions, respectively (growth at constant or increasing concentration of stimulator/inhibitor). The non-linear solution reflects a common situation interesting from an environmental pollution point of view e.g. the influence of increasing (with time) concentration of toxins on plant growth. Having obtained temperature modified growth equations we can draw further qualitative and, especially, quantitative conclusions about the mechanical properties of the cell wall itself. This also concerns a new and interesting result obtained in our model: We have calculated the magnitude of the cell wall yielding coefficient (T) [m<sup>3</sup> J<sup>-1</sup>•s<sup>-1</sup>] in function of temperature which has acquired reasonable numerical value throughout.


1990 ◽  
Vol 10 (6) ◽  
pp. 3013-3019
Author(s):  
P Meaden ◽  
K Hill ◽  
J Wagner ◽  
D Slipetz ◽  
S S Sommer ◽  
...  

Yeast kre mutants define a pathway of cell wall (1----6)-beta-D-glucan synthesis, and mutants in genes KRE5 and KRE6 appear to interact early in such a pathway. We have cloned KRE5, and the sequence predicts the product to be a large, hydrophilic, secretory glycoprotein which contains the COOH-terminal endoplasmic reticulum retention signal, HDEL. Deletion of the KRE5 gene resulted in cells with aberrant morphology and extremely compromised growth. Suppressors to the KRE5 deletions arose at a frequency of 1 in 10(7) to 1 in 10(8) and permitted an analysis of deletions which were found to contain no alkali-insoluble (1----6)-beta-D-glucan. These results indicate a role for (1----6)-beta-D-glucan in normal cell growth and suggest a model for sequential assembly of (1----6)-beta-D-glucan in the yeast secretory pathway.


Sign in / Sign up

Export Citation Format

Share Document