Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms

2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Yang Zhao ◽  
Andrei Seluanov ◽  
Vera Gorbunova

Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Patricia D.A. Rohs ◽  
Thomas G. Bernhardt

Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics. Thus, a better understanding of how the cell wall is built will enable the development of new therapies to combat the rise of drug-resistant bacterial infections. This review covers recent advances in defining the mechanisms involved in assembling the peptidoglycan layer with an emphasis on discoveries related to the function and regulation of the cell elongation and division machineries in the model organisms Escherichia coli and Bacillus subtilis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Faris M. Zuraikat ◽  
Rebecca A. Wood ◽  
Rocío Barragán ◽  
Marie-Pierre St-Onge

Two factors intrinsic to health are diet and sleep. These two behaviors may well influence one another. Indeed, that insufficient sleep adversely impacts dietary intakes is well documented. On the other hand, diet may influence sleep via melatonin and its biosynthesis from tryptophan. Experimental data exist indicating that provision of specific foods rich in tryptophan or melatonin can improve sleep quality. Whole diets rich in fruits, vegetables, legumes, and other sources of dietary tryptophan and melatonin have been shown to predict favorable sleep outcomes. Although clinical trials are needed to confirm a causal impact of dietary patterns on sleep and elucidate underlying mechanisms, available data illustrate a cyclical relation between these lifestyle factors. We recommend adopting a healthful diet to improve sleep, which may further promote sustained favorable dietary practices. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Aruni Bhatnagar

Inhalation of fine particulate matter (PM2.5), produced by the combustion of fossil fuels, is an important risk factor for cardiovascular disease. Exposure to PM2.5 has been linked to increases in blood pressure, thrombosis, and insulin resistance. It also induces vascular injury and accelerates atherogenesis. Results from animal models corroborate epidemiological evidence and suggest that the cardiovascular effects of PM2.5 may be attributable, in part, to oxidative stress, inflammation, and the activation of the autonomic nervous system. Although the underlying mechanisms remain unclear, there is robust evidence that long-term exposure to PM2.5 is associated with premature mortality due to heart failure, stoke, and ischemic heart disease. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Enhao Ma ◽  
Yibin Zhu ◽  
Ziwen Liu ◽  
Taiyun Wei ◽  
Penghua Wang ◽  
...  

In nature, insects face a constant threat of infection by numerous exogeneous viruses, and their intestinal tracts are the predominant ports of entry. Insects can acquire these viruses orally during either blood feeding by hematophagous insects or sap sucking and foliage feeding by insect herbivores. However, the insect intestinal tract forms several physical and immunological barriers to defend against viral invasion, including cell intrinsic antiviral immunity, the peritrophic matrix and the mucin layer, and local symbiotic microorganisms. Whether an infection can be successfully established in the intestinal tract depends on the complex interactions between viruses and those barriers. In this review, we summarize recent progress on virus-intestinal tract interplay in insects, in which various underlying mechanisms derived from nutritional status, dynamics of symbiotic microorganisms, and virus-encoded components play intricate roles in the regulation of virus invasion in the intestinal tract, either directly or indirectly. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Karthik Shekhar ◽  
Joshua R. Sanes

It has been known for over a century that the basic organization of the retina is conserved across vertebrates. It has been equally clear that retinal cells can be classified into numerous types, but only recently have methods been devised to explore this diversity in unbiased, scalable, and comprehensive ways. Advances in high-throughput single-cell RNA-sequencing (scRNA-seq) have played a pivotal role in this effort. In this article, we outline the experimental and computational components of scRNA-seq and review studies that have used them to generate retinal atlases of cell types in several vertebrate species. These atlases have enabled studies of retinal development, responses of retinal cells to injury, expression patterns of genes implicated in retinal disease, and the evolution of cell types. Recently, the inquiry has expanded to include the entire eye and visual centers in the brain. These studies have enhanced our understanding of retinal function and dysfunction and provided tools and insights for exploring neural diversity throughout the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Chris Simon ◽  
John R. Cooley ◽  
Richard Karban ◽  
Teiji Sota

Apart from model organisms, 13- and 17-year periodical cicadas (Hemiptera: Cicadidae: Magicicada) are among the most studied insects in evolution and ecology. They are attractive subjects because they predictably emerge in large numbers; have a complex biogeography shaped by both spatial and temporal isolation; and include three largely sympatric, parallel species groups that are, in a sense, evolutionary replicates. Magicicada are also relatively easy to capture and manipulate, and their spectacular, synchronized mass emergences facilitate outreach and citizen science opportunities. Since the last major review, studies of Magicicada have revealed insights into reproductive character displacement and the nature of species boundaries, provided additional examples of allochronic speciation, found evidence for repeated and parallel (but noncontemporaneous) evolution of 13- and 17-year life cycles, quantified the amount and direction of gene flow through time, revealed phylogeographic patterning resulting from paleoclimate change, studied the timing of juvenile development, and created hypotheses for the evolution of life-cycle control and the future effects of climate change on Magicicada life cycles. New ecological studies have supported and questioned the role of prime numbers in Magicicada ecology and evolution, found bidirectional shifts in population size over generations, quantified the contribution of Magicicada to nutrient flow in forest ecosystems, and examined behavioral and biochemical interactions between Magicicada and their fungal parasites and bacterial endosymbionts. Expected final online publication date for the Annual Review of Entomology, Volume 67 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Author(s):  
Takuya Maekawa ◽  
Daiki Higashide ◽  
Takahiro Hara ◽  
Kentarou Matsumura ◽  
Kaoru Ide ◽  
...  

Abstract Since the variables inherent to various diseases cannot be controlled directly in humans, behavioral dysfunctions have been examined in model organisms, leading to better understanding their underlying mechanisms. However, because the spatial and temporal scales of animal locomotion vary widely among species, conventional statistical analyses cannot be used to discover knowledge from the locomotion data. We propose a new procedure to automatically discover locomotion features shared among animal species by means of domain-adversarial deep neural networks. Our neural network is equipped with a function which explains the meaning of segments of locomotion where the cross-species features are hidden by incorporating an attention mechanism into the neural network, regarded as a black box. It enables us to formulate a human-interpretable rule about the cross-species locomotion feature and validate it using statistical tests. We demonstrate the versatility of this procedure by identifying locomotion features shared across different species with dopamine-deficiency, namely humans, mice, and worms, despite their evolutionary differences.


Author(s):  
Jeramiah J. Smith ◽  
Vladimir A. Timoshevskiy ◽  
Cody Saraceno

Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Evon M. DeBose-Scarlett ◽  
Beth A. Sullivan

Centromeres are essential to genome inheritance, serving as the site of kinetochore assembly and coordinating chromosome segregation during cell division. Abnormal centromere function is associated with birth defects, infertility, and cancer. Normally, centromeres are assembled and maintained at the same chromosomal location. However, ectopic centromeres form spontaneously at new genomic locations and contribute to genome instability and developmental defects as well as to acquired and congenital human disease. Studies in model organisms have suggested that certain regions of the genome, including pericentromeres, heterochromatin, and regions of open chromatin or active transcription, support neocentromere activation. However, there is no universal mechanism that explains neocentromere formation. This review focuses on recent technological and intellectual advances in neocentromere research and proposes future areas of study. Understanding neocentromere biology will provide a better perspective on chromosome and genome organization and functional context for information generated from the Human Genome Project, ENCODE, and other large genomic consortia. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2022 ◽  
Vol 40 (1) ◽  
Author(s):  
Nicole M. Wilkinson ◽  
Ho-Chung Chen ◽  
Melissa G. Lechner ◽  
Maureen A. Su

Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document