Tyrosine kinase inhibitors reduce bcl-2 expression and induce apoptosis in androgen-dependent cells

2000 ◽  
Vol 278 (1) ◽  
pp. C66-C72 ◽  
Author(s):  
Takashi Ohigashi ◽  
Munehisa Ueno ◽  
Shoichi Nonaka ◽  
Takashi Nakanoma ◽  
Yusuke Furukawa ◽  
...  

The signal transduction pathway showing how androgen withdrawal induces apoptosis in androgen-dependent cells has not been clearly understood. In these studies, we focused on the behavior of tyrosine kinases in androgen-dependent cells and investigated its correlation with apoptosis and bcl-2 expression. We used SC2G, an androgen-dependent mouse mammary carcinoma cell line, which had been cloned from Shionogi Carcinoma 115 (SC115). When SC2G cells were cultured with herbimycin A (HMA), a potent tyrosine kinase inhibitor, the number of viable cells decreased significantly after 24 h. Terminal deoxyribonucleotidyltransferase-mediated dUTP-biotin nick end labeling and flow cytometric analysis of annexin V staining showed that HMA induced apoptosis of SC2G cells. The level of bcl-2 mRNA in SC2G cells was suppressed by HMA in a dose-dependent manner on RT-PCR. Preincubation with caspase inhibitors protected HMA-induced apoptosis of SC2G cells. When a human bcl-2 gene was transfected in SC2G cells and overexpressed, SC2G cells seemed to acquire tolerance for HMA. These data indicate that HMA-sensitive tyrosine kinase(s) can regulate apoptosis and inhibit bcl-2 expression in SC2G mouse androgen-dependent cells. Tyrosine kinase(s) seemed to be a member of signal transduction between androgen receptor activation and bcl-2 expression.

2001 ◽  
Vol 281 (5) ◽  
pp. H1992-H2001 ◽  
Author(s):  
Jonathan P. Gainor ◽  
Christine A. Morton ◽  
Jared T. Roberts ◽  
Peter A. Vincent ◽  
Fred L. Minnear

Platelets release a soluble factor into blood and conditioned medium (PCM) that decreases vascular endothelial permeability. The objective of this study was to determine the signal-transduction pathway that elicits this decrease in permeability. Permeability-decreasing activity of PCM was assessed by the real-time measurement of electrical resistance across cell monolayers derived from bovine pulmonary arteries and microvessels. Using a desensitization protocol with cAMP/protein kinase A (PKA)-enhancing agents and pharmacological inhibitors, we determined that the activity of PCM is independent of PKA and PKG. Genistein, an inhibitor of tyrosine kinases, prevented the increase in endothelial electrical resistance. Because lysophosphatidic acid (LPA) has been proposed to be responsible for this activity of PCM and is known to activate the Giprotein, inhibitors of the G protein pertussis toxin and of the associated phosphatidylinositol 3-kinase (PI3K) wortmannin were used. Pertussis toxin and wortmannin caused a 10- to 15-min delay in the characteristic rise in electrical resistance induced by PCM. Inhibition of phosphorylation of extracellular signal-regulated kinase with the mitogen-activated kinase kinase inhibitors PD-98059 and U-0126 did not prevent the activity of PCM. Similar findings with regard to the cAMP protocols and inhibition of Giand PI3K were obtained for 1-oleoyl-LPA. These results demonstrate that PCM increases endothelial electrical resistance in vitro via a novel, signal transduction pathway independent of cAMP/PKA and cGMP/PKG. Furthermore, PCM rapidly activates a signaling pathway involving tyrosine phosphorylation, the Giprotein, and PI3K.


1995 ◽  
Vol 268 (1) ◽  
pp. C154-C161 ◽  
Author(s):  
G. Bischof ◽  
B. Illek ◽  
W. W. Reenstra ◽  
T. E. Machen

We studied a possible role of tyrosine kinases in the regulation of Ca entry into colonic epithelial cells HT-29/B6 using digital image processing of fura 2 fluorescence. Both carbachol and thapsigargin increased Ca entry to a similar extent and Ca influx was reduced by the tyrosine kinase inhibitor genistein (50 microM). Further experiments were performed in solutions containing 95 mM K to depolarize the membrane potential, and the effects of different inhibitors on influx of Ca, Mn, and Ba were compared. Genistein, but not the inactive analogue daidzein nor the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2- methylpiperazine, decreased entry of all three divalent cations by 47-59%. In high-K solutions, carbachol or thapsigargin both caused intracellular Ca to increase to a plateau of 223 +/- 19 nM. This plateau was reduced by the tyrosine kinase inhibitors genistein (to 95 +/- 8 nM), lavendustin A (to 155 +/- 17 nM), and methyl-2,5-dihydroxycinnamate (to 39 +/- 3 nM). Orthovanadate, a protein tyrosine phosphatase inhibitor, prevented the inhibitory effect of genistein. Ca pumping was unaffected by genistein. Carbachol increased tyrosine phosphorylation (immunoblots with anti-phosphotyrosine antibodies) of 110-, 75-, and 70-kDa proteins, and this phosphorylation was inhibited by genistein. We conclude that carbachol and thapsigargin increase Ca entry, and tyrosine phosphorylation of some key proteins may be important for regulating this pathway.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
Michael H. Tomasson ◽  
Ifor R. Williams ◽  
Robert Hasserjian ◽  
Chirayu Udomsakdi ◽  
Shannon M. McGrath ◽  
...  

Abstract The TEL/PDGFβR fusion protein is expressed as the consequence of a recurring t(5;12) translocation associated with chronic myelomonocytic leukemia (CMML). Unlike other activated protein tyrosine kinases associated with hematopoietic malignancies, TEL/PDGFβR is invariably associated with a myeloid leukemia phenotype in humans. To test the transforming properties of TEL/PDGFβR in vivo, and to analyze the basis for myeloid lineage specificity in humans, we constructed transgenic mice with TEL/PDGFβR expression driven by a lymphoid-specific immunoglobulin enhancer-promoter cassette. These mice developed lymphoblastic lymphomas of both T and B lineage, demonstrating that TEL/PDGFβR is a transforming protein in vivo, and that the transforming ability of this fusion is not inherently restricted to the myeloid lineage. Treatment of TEL/PDGFβR transgenic animals with a protein tyrosine kinase inhibitor with in vitro activity against PDGFβR (CGP57148) resulted in suppression of disease and a prolongation of survival. A therapeutic benefit was apparent both in animals treated before the development of overt clonal disease and in animals transplanted with clonal tumor cells. These results suggest that small-molecule tyrosine kinase inhibitors may be effective treatment for activated tyrosine kinase–mediated malignancies both early in the course of disease and after the development of additional transforming mutations.


1997 ◽  
Vol 272 (6) ◽  
pp. H2686-H2692 ◽  
Author(s):  
N. Jin ◽  
R. A. Rhoades

Hydrogen peroxide (H2O2) is an important reactive oxygen species implicated in lung vascular constriction and injury. The purpose of this study was to investigate the role of tyrosine kinases in H2O2-induced vascular contraction and dysfunction. In our study, H2O2 (200 microM) caused an initial transient contraction followed by a strong, sustained contraction in isolated rat pulmonary arteries. Genistein, a tyrosine kinase inhibitor, attenuated both the initial and the sustained contractions. Aminogenistein and tyrphostin 51, specific inhibitors of tyrosine kinases, had the same effects as genistein. Exposure of pulmonary arteries to H2O2 for 1 h caused a significant reduction in the contractile response to KCl or phenylephrine and in the vasodilatory response to acetylcholine (smooth muscle dysfunction). Although tyrosine kinase inhibitors significantly blocked contractions induced by H2O2, pretreatment of pulmonary arteries with these inhibitors before H2O2 exposure did not prevent the decreases in responses to KCl, phenylephrine, or acetylcholine. Removal of extracellular Ca2+ and depletion of intracellular Ca2+ pools by ryanodine or thapsigargin did not inhibit the initial and sustained contractions in response to H2O2. W-7, a calmodulin antagonist, or ML-9, a myosin light chain kinase inhibitor, significantly inhibited the sustained contractions but did not prevent smooth muscle dysfunction induced by H2O2. These data show that 1) exposure to H2O2 causes smooth muscle contractions and dysfunction in isolated pulmonary arteries and 2) activation of tyrosine kinases mediates H2O2-induced contractions; however, tyrosine kinases do not appear to be involved in H2O2-induced inhibition of arterial responses to vasoactive substances. These data suggest that different signaling pathways and mechanisms are involved in H2O2-induced smooth muscle contraction and dysfunction.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3541-3541
Author(s):  
Swaminathan Murugappan ◽  
Haripriya Shankar ◽  
Satya Kunapuli

Abstract Protein kinase C (PKC)-δ is a novel PKC that has been shown to be tyrosine phosphorylated upon stimulation with agonists in platelets. Tyrosine phosphorylation of PKCδ has been shown to occur in a Fyn-dependent manner downstream of glycoprotein VI (GPVI) signaling in platelets. Although thrombin causes tyrosine phosphorylation of PKCδ in platelets, the mechanism of this event is not elucidated. In this study, we investigated whether G-protein signaling pathways utilize similar pathways as GPVI in tyrosine phosphorylation of PKCδ. Protease activated receptor (PAR) -1 selective peptide, SFLLRN and PAR - 4 selective peptide, AYPGKF caused a time- and concentration-dependent increase in tyrosine phosphorylation of PKCδ in human platelets. However, AYPGKF failed to cause tyrosine phosphorylation of PKCδ in Gq-deficient mouse platelets. Both U73122, a phospholipase C (PLC) inhibitor, and dimethyl-BAPTA, an intracellular calcium chelator, inhibited the tyrosine phosphorylation of PKCδ downstream of the PAR activation suggesting a role for Gq/PLC pathways and intracellular calcium in mediating this event. Inhibition of PKC isoforms using GF109203X potentiated the tyrosine phosphorylation of PKCδ. The Src family tyrosine kinase inhibitors, PP1 and PP2 inhibited the tyrosine phosphorylation of PKCδ suggesting a role for Src family tyrosine kinase members in this event. We also found that both Lyn and Src are physically associated with PKCδ in a constitutive manner in platelets. Finally we found that there was a time-dependent activation of Src following activation of platelets with thrombin. Thus, the precomplexed Src and Lyn tyrosine kinases get activated following PAR stimulation resulting in the tyrosine phosphorylation of PKCδ. All these data indicate that tyrosine phosphorylation of PKCδ downstream of thrombin occurs in a calcium- and Src-family kinase dependent manner in human platelets.


1994 ◽  
Vol 127 (3) ◽  
pp. 859-866 ◽  
Author(s):  
R L Klemke ◽  
M Yebra ◽  
E M Bayna ◽  
D A Cheresh

FG human pancreatic carcinoma cells adhere to vitronectin using integrin alpha v beta 5 yet are unable to migrate on this ligand whereas they readily migrate on collagen in an alpha 2 beta 1-dependent manner. We report here that epidermal growth factor receptor (EGFR) activation leads to de novo alpha v beta 5-dependent FG cell migration on vitronectin. The EGFR specific tyrosine kinase inhibitor tyrphostin 25 selectively prevents EGFR autophosphorylation thereby preventing the EGF-induced FG cell migration response on vitronectin without affecting constitutive migration on collagen. Protein kinase C (PKC) activation also leads to alpha v beta 5-directed motility on vitronectin; however, this is not blocked by tyrosine kinase inhibitors. In this case, PKC activation appears to be associated with and downstream of EGFR signaling since calphostin C, an inhibitor of PKC, blocks FG cell migration on vitronectin induced by either PKC or EGF. These findings represent the first report implicating a receptor tyrosine kinase in a specific integrin mediated cell motility event independent of adhesion.


2006 ◽  
Vol 290 (1) ◽  
pp. E123-E128 ◽  
Author(s):  
David C. Wright ◽  
Paige C. Geiger ◽  
Dong-Ho Han ◽  
John O. Holloszy

Muscle contractions and insulin stimulate glucose transport into muscle by separate pathways. The contraction-mediated increase in glucose transport is mediated by two mechanisms, one involves the activation of 5′-AMP-activated protein kinase (AMPK) and the other involves the activation of calcium/calmodulin-dependent protein kinase II (CAMKII). The steps leading from the activation of AMPK and CAMKII to the translocation of GLUT4 to the cell surface have not been identified. Studies with the use of the tyrosine kinase inhibitor genistein suggest that one or more tyrosine kinases could be involved in contraction-stimulated glucose transport. The purpose of the present study was to determine the involvement of tyrosine kinases in contraction-stimulated glucose transport in rat soleus and epitrochlearis muscles. Contraction-stimulated glucose transport was completely prevented by pretreatment with genistein (100 μM) and the related compound butein (100 μM). However, the structurally distinct tyrosine kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-( t-butyl)pyrazolo[3,4-d]pyridine and herbimycin did not reduce contraction-stimulated glucose transport. Furthermore, genistein and butein inhibited glucose transport even when muscles were exposed to these compounds after being stimulated to contract. Muscle contractions did not result in increases in tyrosine phosphorylation of proteins such as proline-rich tyrosine kinase and SRC. These results provide evidence that tyrosine kinases do not mediate contraction-stimulated glucose transport and that the inhibitory effects of genistein on glucose transport result from direct inhibition of the glucose transporters at the cell surface.


1997 ◽  
Vol 273 (2) ◽  
pp. F206-F212 ◽  
Author(s):  
T. Yokoo ◽  
M. Kitamura

Bioflavonoid quercetin is known as an anti-cancer agent that induces apoptosis of tumor cells. Currently, however, little is understood about the effect of this drug on the function of normal cells. In this report, we address an unexpected, novel action of quercetin against apoptosis. Pretreatment with quercetin protected mesangial cells from hydrogen peroxide (H2O2)-induced apoptosis. A similar effect was observed in other cell types including LLC-PK1 epithelial cells and NRK49F fibroblasts. To explore the molecular mechanisms involved, we tested the effect of quercetin on c-Jun/activator protein-1 AP-1), the crucial mediator for H2O2-initiated apoptosis. Northern blot analysis revealed that quercetin suppressed the c-jun expression by H2O2. This was correlated with blunted activation of 12-O-tetradecanoylphorbol 13-acetate response element (TRE) in response to H2O2. These results suggested that quercetin inhibited apoptosis via intervention in the c-Jun/AP-1 pathway. To further investigate the action of quercetin, its effect on tyrosine kinases was studied. Immunoblot analysis revealed that H2O2 induced tyrosine phosphorylation. Quercetin inhibited this process in a dose-dependent manner. Inactivation of tyrosine kinases was an event upstream of c-Jun/AP-1, because tyrosine kinase inhibitors suppressed both activation of c-Jun/AP-1 and induction of apoptosis by H2O2. These findings elucidated the novel action of quercetin as an apoptosis inhibitor. This cytoprotective effect was found to be via suppression of the tyrosine kinase-c-Jun/AP-1 pathway triggered by oxidant stress.


2001 ◽  
Vol 26 (3) ◽  
pp. 207-215 ◽  
Author(s):  
R Sirianni ◽  
R Sirianni ◽  
BR Carr ◽  
V Pezzi ◽  
WE Rainey

Adrenal aldosterone synthesis is influenced by a variety of factors. The major physiological regulators of aldosterone production are angiotensin II (Ang IotaIota) and potassium (K(+)). Ang IotaIota stimulates aldosterone production through the activation of multiple intracellular signaling pathways. It has recently been demonstrated that Ang IotaIota activates src tyrosine kinases in vascular smooth muscle cells. The src family of tyrosine kinases are widely distributed non-receptor kinases that influence several signal transduction pathways. In the present study we evaluated the effect of a selective src family inhibitor, PP2, on aldosterone production using a human adrenocortical carcinoma-derived (H295R) cell line. Treatments for 6 or 48 h with PP2 (0.3 microM-10 microM) inhibited basal, Ang IotaIota, K(+) and dibutyryladenosine cyclic monophosphate (dbcAMP) stimulation of aldosterone production in a concentration-dependent manner. PP2 did not affect cell viability at any of the concentrations tested. Moreover, time course studies using PP2 (10 microM) for 6, 12, 24, and 48 h revealed a time-dependent inhibition of aldosterone production. Inhibition by PP2 (0.3-10 microM) was also observed for the metabolism of 22R-hydroxycholesterol (22R-OHChol) to aldosterone in H295R cells. Since 22R-OHChol is a substrate for cytochrome P450 side-chain cleavage enzyme (CYP11A) that does not require steroidogenic acute regulatory (StAR) protein for transport to the inner mitochondrial membrane, these results suggest that PP2 inhibition occurred beyond the rate-limiting step in aldosterone synthesis. Genistein, a non-specific tyrosine kinase inhibitor also blocked aldosterone production, but the inhibition was the result of a non-specific effect on 3beta-hydroxysteroid dehydrogenase (3betaHSD). In contrast, PP2 did not appear to act as a direct inhibitor of 3betaHSD activity. To further investigate the site of PP2 action, we examined its effect on H295R cell metabolism of [(14)C]progesterone using thin layer chromatography. PP2 treatment for 48 h caused an increase in the conversion of progesterone to 17alpha-hydroxyprogesterone. To determine if this apparent increase in 17alpha-hydroxylase activity was due to increased transcript, we examined the effect of PP2 on CYP17 mRNA. PP2 treatment caused an increase in CYP17 mRNA without an effect on 3betaHSD mRNA levels. Inhibition of protein synthesis with cycloheximide increased basal levels of CYP17 mRNA levels and blocked the induction observed by PP2. This suggests that new protein synthesis is a necessary part of PP2 induction of CYP17. Taken together these data suggest that the src tyrosine kinase inhibitor, PP2, is a potent inhibitor of aldosterone production. One mechanism for the inhibition is through an induction of CYP17 mRNA and enzyme activity. Src tyrosine kinases, therefore, may be involved with the promotion of a glomerulosa phenotype through the inhibition of CYP17 expression.


Sign in / Sign up

Export Citation Format

Share Document