Increased plasma levels of adipokines in preeclampsia: relationship to placenta and adipose tissue gene expression

2006 ◽  
Vol 290 (2) ◽  
pp. E326-E333 ◽  
Author(s):  
Fred Haugen ◽  
Trine Ranheim ◽  
Nina K. Harsem ◽  
Esther Lips ◽  
Anne C. Staff ◽  
...  

Adipokines are predominantly secretory protein hormones from adipose tissue but may also originate in placenta and other organs. Cross-sectionally, we monitored maternal plasma concentration of adiponectin, resistin, and leptin and their mRNA expression in abdominal subcutaneous adipose tissue and placenta from preeclamptic (PE; n = 15) and healthy pregnant (HP; n = 23) women undergoing caesarean section. The study groups were similar in age and BMI, whereas HOMA-IR tended to be higher in the PE group. In fasting plasma samples, the PE group had higher concentrations of adiponectin (18.3 ± 2.2 vs. 12.2 ± 1.1 μg/ml, P = 0.011), resistin (5.68 ± 0.41 vs. 4.65 ± 0.32 ng/ml, P = 0.028), and leptin (34.4 ± 3.2 vs. 22.7 ± 2.1 ng/ml, P = 0.003) compared with the HP group. Adiponectin and leptin concentrations were still different between PE and HP after controlling for BMI and HOMA-IR, whereas resistin concentrations differed only after controlling for BMI but not HOMA-IR. We found similar mean mRNA levels of adiponectin, resistin, and leptin in abdominal subcutaneous adipose tissue in PE and HP women. When data were pooled from PE and HP women, resistin mRNA levels in adipose tissue also correlated with HOMA-IR ( r = 0.470, P = 0.012) after controlling for BMI and pregnancy duration. Resistin mRNA levels in placenta were not significantly different between PE and HP, whereas leptin mRNA levels were higher in PE placenta compared with HP. Thus increased plasma concentrations of adiponectin and resistin in preeclampsia may not relate to altered expression levels in adipose tissue and placenta, whereas both plasma and placenta mRNA levels of leptin are increased in preeclampsia.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shasika Jayarathne ◽  
Mandana Pahlavani ◽  
Latha Ramalingam ◽  
Shane Scoggin ◽  
Naima Moustaid-Moussa

Abstract Objectives Brown adipose tissue (BAT) regulates energy balance through thermogenesis, in part via uncoupling protein -1 (UCP-1). White adipose tissue (WAT), namely subcutaneous adipose tissue (SAT) can convert to a beige/brite adipose tissue phenotype (browning) under thermogenic conditions such as cold. We previously reported that eicosapentaenoic acid (EPA) reduced obesity and glucose intolerance, and increased UCP-1 in BAT of B6 mice at ambient temperature (22°C); and these effects were attenuated at thermoneutral environment (28–30°C). We hypothesized that EPA exerts anti-obesity effects on SAT, including increased browning, adipocyte hypotrophy; and these effects require UCP-1. Methods Six-week-old B6 wild type (WT) and UCP-1 knock-out (KO) male mice were maintained at thermoneutral environment and fed high fat diet (HF) with or without 36 g/kg of AlaskOmega EPA-enriched fish oil (800 mg/g) for 14 weeks; and SAT was collected for histological, gene and protein analyses. SAT was also prepared from chow diet-fed WT and KO mice at ambient environment to prepare stroma vascular cells, which were differentiated into adipocytes, treated with 100uM EPA for 48 hours then harvested for mRNA and protein analyses. Results KO mice fed HF diets had the highest body weight (P < 0.05) among all groups. EPA reduced fat cell size in both WT and KO mice fed the EPA diet. mRNA levels of fibroblast growth factor-21 (FGF-21) were higher in SAT of WT mice fed EPA compared to WT mice fed HF (P < 0.05), with no differences between the KO genotype. KO mice fed HF diets had lower levels of UCP-3 in SAT compared to WT mice fed HF (P < 0.05), which was rescued only in the KO mice fed EPA (P < 0.05). UCP-1 protein levels were very low in SAT tissues, and UCP-2 mRNA levels were similar across all groups in SAT. Interestingly, EPA significantly (P < 0.05) increased mRNA expression of UCP-2, UCP-3 and FGF21 in differentiated SAT adipocytes from both WT and KO compared to control. Furthermore, UCP-1 mRNA levels were significantly higher in WT adipocytes treated with EPA, compared to non-treated cells (P < 0.05). Additional mechanistic studies are currently underway to further dissect adipose depot differences in EPA effects in WT vs. KO mice. Conclusions Our data suggest that EPA increases SAT browning, independently of UCP-1. Funding Sources NIH/NCCIH.


2003 ◽  
Vol 284 (2) ◽  
pp. E443-E448 ◽  
Author(s):  
A. S. Lihn ◽  
T. Østergård ◽  
B. Nyholm ◽  
S. B. Pedersen ◽  
B. Richelsen ◽  
...  

Adiponectin is suggested to be an important mediator of insulin resistance. Therefore, we investigated the association between adiponectin and insulin sensitivity in 22 healthy first-degree relatives (FDR) to type 2 diabetic patients and 13 matched control subjects. Subcutaneous adipose tissue biopsies were taken before and after a hyperinsulinemic euglycemic clamp. FDR subjects were insulin resistant, as indicated by a reduced Mvalue (4.44 vs. 6.09 mg · kg−1· min−1, P < 0.05). Adiponectin mRNA expression was 45% lower in adipose tissue from FDR compared with controls ( P < 0.01), whereas serum adiponectin was similar in the two groups (6.4 vs. 6.6 μg/ml, not significant). Insulin infusion reduced circulating levels of adiponectin moderately (11–13%) but significantly in both groups ( P < 0.05). In the control group, adiponectin mRNA levels were negatively correlated with fasting insulin ( P < 0.05) and positively correlated with insulin sensitivity ( P < 0.05). In contrast, these associations were not found in the FDR group. In conclusion, FDR have reduced adiponectin mRNA in subcutaneous adipose tissue but normal levels of circulating adiponectin. Adiponectin mRNA levels are positively correlated with insulin sensitivity in control subjects but not in FDR. These findings indicate dysregulation of adiponectin gene expression in FDR.


Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 123 ◽  
Author(s):  
Ignacio Ara ◽  
Pernille Auerbach ◽  
Steen Larsen ◽  
Esmeralda Mata ◽  
Bente Stallknecht ◽  
...  

Macrophage infiltration in two subcutaneous adipose tissue depots and systemic low-grade inflammation were studied in post-obese (PO), obese (O), and control (C) subjects. Young males were recruited into PO: (n = 10, weight-loss avg. 26%, BMI: 26.6 ± 0.7, mean ±SEM kg/m2), O: (n = 10, BMI: 33.8 ± 1.0kg/m2) and C: (n = 10, BMI: 26.6 ± 0.6 kg/m2). PO and C were matched by BMI. Blood and abdominal and gluteal subcutaneous adipose tissue were obtained in the overnight fasted state. Plasma concentrations of IL-6 and CRP were higher (p < 0.05) in O than in PO and C, TNF-α was higher (p < 0.05) only in O compared to PO and IL-18 was similar between groups. The number of CD68+ macrophages was higher (p < 0.05) in the gluteal than the abdominal depot, and higher (p < 0.05) in O and PO compared to C in both depots. The content of CD163+ macrophages was similar between depots but was higher (p < 0.05) in PO compared to C and O in the gluteal depot. In post obese men with a long-term sustained weight loss, systemic low-grade inflammation was similar to non-obese controls despite a higher subcutaneous adipose tissue CD68+ macrophage content. Interestingly, the anti-inflammatory CD163+ macrophage adipose tissue content was consistently higher in post obese than obese and controls.


2000 ◽  
Vol 1 (2) ◽  
pp. 81-88 ◽  
Author(s):  
Michael A. Statnick ◽  
Lisa S. Beavers ◽  
Laura J. Conner ◽  
Helena Corominola ◽  
Dwayne Johnson ◽  
...  

We have screened a subtracted cDNA library in order to identify differentially expressed genes in omental adipose tissue of human patients with Type 2 diabetes. One clone (#1738) showed a marked reduction in omental adipose tissue from patients with Type 2 diabetes. Sequencing and BLAST analysis revealed clone #1738 was the adipocyte-specific secreted protein gene apM1 (synonyms ACRP30, AdipoQ, GBP28). Consistent with the murine orthologue, apM1 mRNA was expressed in cultured human adipocytes and not in preadipocytes. Using RT-PCR we confirmed that apM1 mRNA levels were significantly reduced in omental adipose tissue of obese patients with Type 2 diabetes compared with lean and obese normoglycemic subjects. Although less pronounced, apM1 mRNA levels were reduced in subcutaneous adipose tissue of Type 2 diabetic patients. Whereas the biological function of apM1 is presently unknown, the tissue specific expression, structural similarities to TNFα and the dysregulated expression observed in obese Type 2 diabetic patients suggest that this factor may play a role in the pathogenesis of insulin resistance and Type 2 diabetes.


2010 ◽  
pp. 89-96
Author(s):  
J Kopecký ◽  
E Krušinová ◽  
M Klementová ◽  
L Kazdová ◽  
P Mlejnek ◽  
...  

Our aim was to assess the reaction of TNFα, resistin, leptin and adiponectin to lipid infusion. Eight healthy subjects underwent a 24-hour lasting infusion of lipid emulsion. Plasma concentrations and expressions of selected cytokines in subcutaneous fat were measured. TNFα plasma concentration did not change during the first 4 hours of hypertriglyceridemia, but a significant increase after 24 hours was detected (p<0.001 for 0; 30; 240 min vs. 24 h). Plasma concentration of resistin significantly increased at 30 min of infusion and remained elevated (p<0.01 for 0 min vs. 30; 240 min; p<0.001 for 0 min vs. 24 h). Plasma concentrations of leptin and adiponectin did not show any significant changes. Although the expression of resistin in the subcutaneous adipose tissue tended to increase, the change was not significant. Expressions of TNFα, leptin and adiponectin were unaffected. In conclusions, our results indicate that acutely induced hyperlipidemia could influence the secretion of TNFα and resistin.


2017 ◽  
Vol 17 (2) ◽  
pp. 433-446 ◽  
Author(s):  
X. F. Yang ◽  
Z. Y. Jiang ◽  
Z. M. Tian ◽  
Y. Q. Qiu ◽  
L. Wang ◽  
...  

Abstract The uneven development of adipose tissues reflects a differential occurrence of biological events in vivo while the underlying molecular mechanism remains largely unknown. In the present study, the in vivo inflammatory status of an inbred obese porcine model, Lantang pig, was assessed, aiming to provide evidence for obesity biology. Compared with genetically lean pigs (crossbred, Duroc × Landrace × Large White), Lantang pigs exhibited a larger amount of ultra large adipocytes in subcutaneous adipose tissue accompanied with higher expression of macrophage/monocytes markers and pro-inflammatory genes (TLR4, CD14, CD11β, MCP1, TNFα, IL1β and IL6) and lower expression of cellular antioxidant enzymes (SOD1, 2 and 3). Plasma concentrations of LPS and TNF-α were also higher in Lantang pigs than in lean pigs. Among adipose tissues of Lantang pigs, the subcutaneous tissue had the most abundant expression of inflammation related genes (TLR4, CD14, TNFα and IL6) and the lowest level of cellular antioxidant genes (SOD 1 and 2), while the perirenal adipose tissue had opposite profile. Significant activation of p38 MAPK pathway was indicated by increased phosphorylation of p38 in the subcutaneous adipose tissue of Lantang pigs. Collectively, the bacteria-derived LPS induced inflammation-associated oxidative stress indeed exists in adipose tissues of Lantang pig, and the differential expressions of inflammatory and antioxidant genes, to some extent, account for the uneven development of the adipose tissue within bodies.


2019 ◽  
Vol 44 (7) ◽  
pp. 720-726 ◽  
Author(s):  
Renata Prado Vasconcelos ◽  
Milena Simões Peixoto ◽  
Keciany Alves de Oliveira ◽  
Andrea Claudia Freitas Ferreira ◽  
Andrelina Noronha Coelho-de-Souza ◽  
...  

The development of obesity-related metabolic disorders is more evident in male in comparison with female subjects, but the mechanisms are unknown. Several studies have shown that oxidative stress is involved in the pathophysiology of obesity, but the majority of these studies were performed with male animals. The aim of this study was to evaluate the sex-related differences in subcutaneous adipose tissue redox homeostasis and inflammation of rats chronically fed a high-fat diet. NADPH oxidase (NOX), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase activities were evaluated in the subcutaneous adipose tissue (SC) of adult male and female rats fed either a standard chow (SCD) or a high-fat diet (HFD) for 11 weeks. NOX2 and NOX4 messenger RNA (mRNA) levels, total reduced thiols, interleukin (IL)-1β, tumor necrosis factor α (TNF-α), and IL-6 were also determined. Higher antioxidant enzyme activities and total reduced thiol levels were detected in SC of control male compared with female rats. Chronic HFD administration increased NOX activity and NOX2 and NOX4 mRNA levels and decreased SOD and GPx activities only in male animals. IL-1β, TNF-α, and IL-6 levels, as well as Adgre1, CD11b, and CD68 mRNA levels, were also higher in SC of males after HFD feeding. In SC of females, catalase activity was higher after HFD feeding. Taken together, our results show that redox homeostasis and inflammation of SC is sexually dimorphic. Furthermore, males show higher oxidative stress in SC after 11 weeks of HFD feeding owing to both increased reactive oxygen species (ROS) production through NOX2 and NOX4 and decreased ROS detoxification.


2011 ◽  
Vol 300 (2) ◽  
pp. R387-R397 ◽  
Author(s):  
Ousseynou Sarr ◽  
Florence Gondret ◽  
Agnès Jamin ◽  
Isabelle Le Huërou-Luron ◽  
Isabelle Louveau

The high-protein content of formula offered to low-birth weight babies is suspected to increase the risk of obesity later in life. This study assesses the immediate and subsequent effects of a protein intake in excess during suckling on hormonal and metabolic status and adipose tissue features in a porcine model of intrauterine growth restriction. Piglets were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to day 28. A subset of piglets was killed at day 28. After weaning, the remaining piglets had free access to the same solid high-fat diet until day 160. From day 2 to day 28, HP piglets had a greater daily weight gain ( P < 0.05). Relative weight of perirenal adipose tissue (PAT), adipocyte mean diameters, activities of lipogenic enzymes in PAT and subcutaneous adipose tissue (SCAT), and leptinemia were lower ( P < 0.05) in HP piglets than in AP piglets. Genes related to glucose utilization and lipid anabolism in PAT and SCAT were ( P < 0.05) or tended ( P < 0.1) to be downregulated in HP piglets. At day 160, adipocytes were enlarged, whereas lipogenic rates in adipocytes were reduced ( P < 0.05) in SCAT of HP compared with AP pigs. Percent body fat, mRNA levels of genes controlling lipid metabolism, and plasma concentrations of hormones and metabolites were similar in HP and AP pigs. In conclusion, a HP neonatal formula induced a temporary reduction of adiposity and changed adipocyte physiology at peripubertal age.


Sign in / Sign up

Export Citation Format

Share Document