Phosphorylation of STAT3 in hypothalamic nuclei is stimulated by lower doses of leptin than are needed to inhibit food intake

Author(s):  
Ruth B.S. Harris

This experiment investigated which hypothalamic nuclei were activated by a dose of leptin that inhibited food intake. Food intake, energy expenditure, respiratory exchange ratio (RER) and intrascapular brown adipose tissue (IBAT) temperature were measured in male and female Sprague Dawley rats for 36 hours following an intraperitoneal injection of 0, 50, 200, 500 or 1000 mg leptin/kg with each rat tested with each dose of leptin in random order. In both males and females RER and 12 hour food intake and were inhibited only by 1000 mg leptin/kg, but there was no effect on energy expenditure or IBAT temperature. At the end of the experiment pSTAT3 immunoreactivity was measured one hour after injection of 0, 50, 500 or 1000 mg leptin/kg. In male rats the lowest dose of leptin produced a maximal activation of STAT3 in the Arc and nucleus of the solitary tract (NTS). There was no response in the dorsomedial hypothalamus but there was a progressive increase in VMH pSTAT3 with increasing doses of leptin. In female rats there was no significant change in Arc pSTAT3, NTS activation was maximal with 500 mg leptin/kg, but only the highest dose of leptin increased VMH pSTAT3. These results suggest that the VMH plays an important role in the energetic response to elevations of circulating leptin, but do not exclude the possibility that multiple nuclei provide the appropriate integrated response to hyperleptinemia.

1989 ◽  
Vol 67 (4) ◽  
pp. 402-409 ◽  
Author(s):  
Denis Richard ◽  
Serge Rivest

The role of exercise training in energy balance has been reviewed. Recent well-conducted studies showed that exercise may increase energy expenditure not only during the period of exercise itself but during the postexercise period as well. This notion of excess postexercise oxygen consumption (EPOC), which has been a controversial issue for many years, is now becoming a generally well-accepted concept, the consensus being that EPOC takes place following prolonged and strenuous exercise bouts. Besides, the role of EPOC in long-term energy balance remains to be determined. Long-term energy balance studies carried out in rats show that exercise affects energy balance by altering food intake and promoting energy expenditure. In male rats exercise causes a marked decrease in energy intake which contributes, in association with the expenditure of exercise itself, to retard lean and fat tissue growth. From the suppressed deposition of lean body mass, decreases in basal metabolic rate can be predicted in males. In female rats, exercise does not affect food intake; the lower energy gain of exercise-trained females results from the elevated expenditure rate associated with exercise itself. In both male and female rats, there is no evidence that exercise training affects energy expenditure other than during exercise itself unless the habitual feeding pattern of the rats is radically modified. The interactive effects of diet and exercise, which have to be further investigated in long-term energy balance, emerge as a promising area of research.Key words: exercise training, nutritional energetics, brown adipose tissue, diet-induced thermogenesis, body composition.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Soo-Jin Jeong ◽  
Chang-Seob Seo ◽  
Jung-Im Huh ◽  
Hyeun-Kyoo Shin

Background. The traditional herbal formula Yukmijiwhang-tang (YMJ) consists of six medicinal herbs and has been used to treat dysuria, diabetic mellitus, and neurosis in Korea, China, and Japan. Here we report safety information on its subacute toxicity and the cytotoxicity.Methods. YMJ extract was administered to SD rats at various dosages for 4 weeks. We monitored clinical signs, mortality, body and organ weights, food intake, and hematological and serum biochemistry factors. For cytotoxicity testing, each cell line was treated with various concentrations of YMJ for 24 h.Results. YMJ treatment had no significant effects on changes in clinical signs, body weight, or food intake in male or female rats. In male rats, YMJ treatment decreased the absolute weights of the epididymides and serum Na levels. In female rats, YMJ significantly reduced the prothrombin time (PT) and serum creatine level. However, the changes were not severe and were considered to be in the normal physiological range for rats. The no-observed-adverse-effect-level (NOAEL) was estimated to be 2000 mg/kg/day. YMJ extract did not exert any cytotoxicity against 23 tested cell lines.Conclusions. Our data provide scientific evidence on the safety of YMJ for potential development as a prescription drug.


2021 ◽  
pp. 097275312110057
Author(s):  
Archana Gaur ◽  
G.K. Pal ◽  
Pravati Pal

Background: Obesity is because of excessive fat accumulation that affects health adversely in the form of various diseases such as diabetes, hypertension, cardiovascular diseases, and many other disorders. Our Indian diet is rich in carbohydrates, and hence the sucrose-induced obesity is an apt model to mimic this. Ventromedial hypothalamus (VMH) is linked to the regulation of food intake in animals as well as humans. Purpose: To understand the role of VMHin sucrose-induced obesity on metabolic parameters. Methods: A total of 24 adult rats were made obese by feeding them on a 32% sucrose solution for 10 weeks. The VMH nucleus was ablated in the experimental group and sham lesions were made in the control group. Food intake, body weight, and biochemical parameters were compared before and after the lesion. Results: Male rats had a significant weight gain along with hyperphagia, whereas female rats did not have a significant weight gain inspite of hyperphagia. Insulin resistance and dyslipidemia were seen in both the experimental and control groups. Conclusion: A sucrose diet produces obesity which is similar to the metabolic syndrome with insulin resistance and dyslipidemia, and a VMH lesion further exaggerates it. Males are more prone to this exaggeration.


2005 ◽  
Vol 288 (6) ◽  
pp. R1486-R1491 ◽  
Author(s):  
Lisa A. Eckel ◽  
Heidi M. Rivera ◽  
Deann P. D. Atchley

The controls of food intake differ in male and female rats. Daily food intake is typically greater in male rats, relative to female rats, and a decrease in food intake, coincident with the estrous stage of the ovarian reproductive cycle, is well documented in female rats. This estrous-related decrease in food intake has been attributed to a transient increase in the female rat's sensitivity to satiety signals generated during feeding bouts. Here, we investigated whether sex or stage of the estrous cycle modulate the satiety signal generated by fenfluramine, a potent serotonin (5-HT) releasing agent. To examine this hypothesis, food intake was monitored in male, diestrous female, and estrous female rats after intraperitoneal injections of 0, 0.25, and 1.0 mg/kg d-fenfluramine. The lower dose of fenfluramine decreased food intake only in diestrous and estrous females, suggesting that the minimally effective anorectic dose of fenfluramine is lower in female rats, relative to male rats. Although the larger dose of fenfluramine decreased food intake in both sexes, the duration of anorexia was greater in diestrous and estrous female rats, relative to male rats. Moreover, the magnitude of the anorectic effect of the larger dose of fenfluramine was greatest in estrous rats, intermediate in diestrous rats, and least in male rats. Thus our findings indicate that the anorectic effect of fenfluramine is modulated by gonadal hormone status.


2021 ◽  
Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershaeuser ◽  
Stefanie Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion Conclusively, we show that UCP1 does not protect against diet-induced obesity at thermoneutrality. Further we introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract BackgroundPrescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant sedation, weight gain, and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.MethodsTo investigate the efficacy of interventions of statin aimed at reversing SGA-induced dyslipidemia, young Sprague Dawley (SD) rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks.ResultsOlanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but had no significant effect on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. A down-regulating of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) expression was observed in brown adipose tissue (BAT) in the olanzapine-only group, following a significant decrease in the ratio of phosphorylated PKA (p-PKA)/PKA. Interestingly, these protein changes could be reversed by co-treatment with O+B. Our results demonstrated simvastatin to be effective in ameliorating TC and TG elevated by olanzapine.ConclusionsModulation of BAT activity could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract Background Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.Methods To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks. Results Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O+B. Conclusions Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Fatima Ryalat ◽  
N Cruz-Diaz ◽  
W Graham ◽  
T Gwathmey-Williams ◽  
P E Gallagher ◽  
...  

Aldosterone plays a significant role in hypertension and target organ damage. Aldosterone antagonists are used in the management of heart failure. However, neither the influence of age nor sex on aldosterone pathophysiology is well understood. We investigated the changes in circulating aldosterone with age and its association with cardiovascular function, using male and female hypertensive renin transgenic (mRen2)27 rats and SD rats at 20 and 50 weeks of age. Both male (22 ± 3 vs. 12 ± 2 ng/dL, n = 9 - 12, p < 0.05) and female (59 ± 10 vs. 23 ± 8 ng/dL, n = 6 - 10, p < 0.05) hypertensive rats had higher serum aldosterone compared with SD rats at 20 weeks of age. At 50 weeks of age, the difference persisted in the hypertensive female rats (63 ± 8 vs. SD: 33 ± 7 ng/dL, n = 6 - 7, p < 0.05), but not in the males. SD male rats have higher systolic blood pressure (SBP) as they age, and consequently develop cardiac diastolic dysfunction associated with higher aldosterone at 50 weeks compared to 20 weeks (28 ± 3 vs. 12 ± 2 ng/dL, n = 7 - 9, p < 0.05). This aging effect on aldosterone was not significant in the other groups. We showed previously that SD males treated with polyphenol rich muscadine grape extract (MGE) have lower aldosterone, less aortic stiffness and better cardiac diastolic function (E/e’) than controls at the older age; the MGE effect was not seen in (mRen2)27 males. Sex differences in aldosterone were not significant in the SD rats at either time point. However, (mRen2)27 female rats had higher aldosterone than (mRen2)27 males at both 20 weeks (59 ± 10 vs. 22 ± 3 ng/dL, n = 10 - 12, p < 0.05) and 50 weeks (63 ± 8 vs. 31 ± 7 ng/dL, n = 6 - 7, p < 0.05), despite the lack of significant differences in SBP. (mRen2)27 female rats preserve cardiac function better than males throughout their life span, while males develop indices of heart failure. Our data suggest that lower aldosterone levels in hypertensive males compared with females do not protect against the higher lifetime burden of elevated SBP and also may reflect different mechanisms controlling circulating aldosterone between sexes. In addition, data suggest a potential therapeutic effect of MGE in the management of age-associated moderate hypertension.


2020 ◽  
Vol 21 (22) ◽  
pp. 8606
Author(s):  
Shogo Moriwaki ◽  
Yuki Narimatsu ◽  
Keisuke Fukumura ◽  
Eiko Iwakoshi-Ukena ◽  
Megumi Furumitsu ◽  
...  

RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH), plays a crucial role in reproduction. In the present study, we explored the other functions of RFRP-3 by investigating the effects of chronic intracerebroventricular infusion of RFRP-3 (6 nmol/day) for 13 days on energy homeostasis in lean male C57BL/6J mice. The infusion of RFRP-3 increased cumulative food intake and body mass. In addition, the masses of brown adipose tissue (BAT) and the liver were increased by the administration of RFRP-3, although the mass of white adipose tissue was unchanged. On the other hand, RFRP-3 decreased O2 consumption, CO2 production, energy expenditure, and core body temperature during a short time period in the dark phase. These results suggest that the increase in food intake and the decrease in energy expenditure contributed to the gain of body mass, including the masses of BAT and the liver. The present study shows that RFRP-3 regulates not only reproductive function, but also energy metabolism, in mice.


1988 ◽  
Vol 255 (4) ◽  
pp. R616-R621 ◽  
Author(s):  
J. O. Hill ◽  
J. C. Anderson ◽  
D. Lin ◽  
F. Yakubu

The effects of differences in meal frequency on body weight, body composition, and energy expenditure were studied in mildly food-restricted male rats. Two groups were fed approximately 80% of usual food intake (as periodically determined in a group of ad libitum fed controls) for 131 days. One group received all of its food in 2 meals/day and the other received all of its food in 10-12 meals/day. The two groups did not differ in food intake, body weight, body composition, food efficiency (carcass energy gain per amount of food eaten), or energy expenditure at any time during the study. Both food-restricted groups had a lower food intake, body weight gain, and energy expenditure than a group of ad libitum-fed controls. In conclusion, these results suggest that amount of food eaten, but not the pattern with which it is ingested, has a major influence on energy balance during mild food restriction.


Sign in / Sign up

Export Citation Format

Share Document