Increased expression of TNF-α, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels

2003 ◽  
Vol 285 (5) ◽  
pp. E1072-E1080 ◽  
Author(s):  
Aina S. Lihn ◽  
Bjørn Richelsen ◽  
Steen B. Pedersen ◽  
Steen B. Haugaard ◽  
Gulla Søby Rathje ◽  
...  

Human immunodeficiency virus (HIV)-associated lipodystrophy syndrome (HALS) is a side effect of highly active antiretroviral therapy of HIV-infected patients; however, the mechanism of the lipodystrophy and insulin resistance seen in this syndrome remains elusive. Adiponectin, an adipocyte-specific protein, is thought to play an important role in regulating insulin sensitivity. We investigated circulating levels and gene expression of adiponectin in subcutaneous abdominal adipose tissue (AT) from 18 HIV-infected patients with HALS compared with 18 HIV-infected patients without HALS. Implications of cytokines for adiponectin levels were investigated by determining circulating levels of TNF-α, IL-6, and IL-8 as well as gene expression of these cytokines in AT. HALS patients exhibited 40% reduced plasma adiponectin levels ( P < 0.05) compared with non-HALS subjects. Correspondingly, adiponectin mRNA levels in AT were reduced by >50% ( P = 0.06). HALS patients were insulin resistant, and a positive correlation was found between plasma adiponectin and insulin sensitivity ( r = 0.55, P < 0.01) and percent limb fat ( r = 0.61, P < 0.01). AT mRNA of TNF-α, IL-6, and IL-8 was increased in AT of HALS subjects ( P < 0.05), and both AT TNF-α mRNA and plasma TNF-α were negatively correlated to plasma adiponectin ( P < 0.05). Finally, TNF-α was found in vitro to inhibit human AT adiponectin mRNA by 80% ( P < 0.05). In conclusion, HALS patients have reduced levels of plasma adiponectin and adiponectin mRNA in AT. Increased cytokine mRNA in AT is hypothesized to exert an inhibitory effect on adiponectin gene expression and, consequently, to play a role in the reduced plasma adiponectin levels found in HALS patients.

2003 ◽  
Vol 285 (3) ◽  
pp. E527-E533 ◽  
Author(s):  
Jens M. Bruun ◽  
Aina S. Lihn ◽  
Camilla Verdich ◽  
Steen B. Pedersen ◽  
Søren Toubro ◽  
...  

Adiponectin is an adipose tissue-specific protein that is abundantly present in the circulation and suggested to be involved in insulin sensitivity and development of atherosclerosis. Because cytokines are suggested to regulate adiponectin, the aim of the present study was to investigate the interaction between adiponectin and three adipose tissue-derived cytokines (IL-6, IL-8, and TNF-α). The study was divided into three substudies as follows: 1) plasma adiponectin and mRNA levels in adipose tissue biopsies from obese subjects [mean body mass index (BMI): 39.7 kg/m2, n = 6] before and after weight loss; 2) plasma adiponectin in obese men (mean BMI: 38.7 kg/m2, n = 19) compared with lean men (mean BMI: 23.4 kg/m2, n = 10) before and after weight loss; and 3) in vitro direct effects of IL-6, IL-8, and TNF-α on adiponectin mRNA levels in adipose tissue cultures. The results were that 1) weight loss resulted in a 51% ( P < 0.05) increase in plasma adiponectin and a 45% ( P < 0.05) increase in adipose tissue mRNA levels; 2) plasma adiponectin was 53% ( P < 0.01) higher in lean compared with obese men, and plasma adiponectin was inversely correlated with adiposity, insulin sensitivity, and IL-6; and 3) TNF-α ( P < 0.01) and IL-6 plus its soluble receptor ( P < 0.05) decreased adiponectin mRNA levels in vitro. The inverse relationship between plasma adiponectin and cytokines in vivo and the cytokine-induced reduction in adiponectin mRNA in vitro suggests that endogenous cytokines may inhibit adiponectin. This could be of importance for the association between cytokines (e.g., IL-6) and insulin resistance and atherosclerosis.


2002 ◽  
Vol 282 (1) ◽  
pp. R226-R234 ◽  
Author(s):  
Yiying Zhang ◽  
Kai-Ying Guo ◽  
Patricia A. Diaz ◽  
Moonseong Heo ◽  
Rudolph L. Leibel

The relationship of leptin gene expression to adipocyte volume was investigated in lean 10-wk-old male C57BL/6J mice. mRNA levels for leptin, insulin receptor, glucocorticoid receptor, and tumor necrosis factor (TNF)-α in inguinal, epididymal, and retroperitoneal adipose tissues were quantified and related to adipocyte volume. Leptin mRNA levels were highly correlated with adipocyte volume within each fat depot. Multiple regression analysis of pooled data from the three depots showed that leptin mRNA levels were strongly correlated with adipocyte volumes (β = 0.84, P < 0.001) and, to a smaller degree, with glucocorticoid receptor mRNA levels (β = 0.36, P < 0.001). Depot of origin had no effect ( P > 0.9). Rates of leptin secretion in vitro were strongly correlated with leptin mRNA levels ( r = 0.89, P < 0.001). mRNA levels for TNF-α, insulin receptor, and glucocorticoid receptor showed no significant correlation with adipocyte volume. These results demonstrate that depot-specific differences in leptin gene expression are mainly related to the volumes of the constituent adipocytes. The strong correlation between leptin gene expression and adipocyte volume supports leptin's physiological role as a humoral signal of fat mass.


2005 ◽  
Vol 288 (5) ◽  
pp. E876-E882 ◽  
Author(s):  
Kouichi Inukai ◽  
Youhei Nakashima ◽  
Masaki Watanabe ◽  
Nobuki Takata ◽  
Takahiro Sawa ◽  
...  

Adiponectin is an adipocyte-derived factor that plays pivotal roles in lipid and glucose metabolism in muscle and liver. The following two adiponectin receptor types were recently identified: AdipoR1 is abundantly expressed in muscle, whereas AdipoR2 is predominantly expressed in the liver. To clarify the regulation of adiponectin receptor gene expression in diabetic states, we examined mRNA levels of AdipoR1 in the muscles of diabetic animals by Northern blotting. The level of AdipoR1 mRNA was increased ∼2.5-fold in muscle of streptozotocin (STZ) diabetic mice, but the normal level was restored by insulin administration, indicating that insulin has an inhibitory effect on AdipoR1 expression. To confirm this inhibitory effect of insulin, we performed in vitro experiments using C2C12 skeletal muscle cells. Insulin treatment for 24 h decreased AdipoR1 expression by ∼60% in C2C12 cells. In addition, this effect was mediated by the phosphatidylinositol 3-kinase-dependent pathway rather than the mitogen-activated protein kinase pathway. AdipoR1 expression in insulin-resistant diabetic mice was also investigated. AdipoR1 expression was decreased by 36% in type 2 diabetic obese db/db mice compared with lean mice. In contrast, hepatic AdipoR2 expression was not significantly changed in either STZ mice or genetically obese mice. Our results indicate that regulation of AdipoR1, but not that of AdipoR2, may be involved in glucose and lipid metabolism in diabetic states.


1995 ◽  
Vol 269 (5) ◽  
pp. R995-R1001
Author(s):  
T. Gopfert ◽  
K. U. Eckardt ◽  
B. Gess ◽  
A. Kurtz

This study investigates the effects of hypoxia and of cobalt on erythropoietin (EPO) gene expression in hepatocytes in vivo and in vitro in neonatal, juvenile, and adult rats. With the use of the ribonuclease protection assay to quantify RNA, both hypoxia (0.1% CO or 9% O2) and cobalt (60 mg/kg) elicit production of increased amounts of EPO mRNA in neonatal and juvenile rat liver in vivo. In vitro hepatocyte EPO gene expression could be reproducibly stimulated by hypoxia (3% O2) but not by cobaltous chloride (50-150 microM) within 2-20 h. Conversely, cobalt substantially attenuated the rise of EPO mRNA levels in response to hypoxia. This inhibitory effect of cobalt was mimicked by zinc but not by other metals. CO attenuated the rise of EPO mRNA levels in vitro in response to hypoxia; this inhibitory effect coincided with an inhibition of total RNA synthesis as determined by [3H]uridine incorporation. The lack of specific inhibitory effects of CO and of specific stimulatory effects of cobalt on hepatocyte EPO gene expression in vitro suggests that a specific heme oxygen sensor may be less important than in hepatoma cells.


2006 ◽  
Vol 291 (2) ◽  
pp. E395-E403 ◽  
Author(s):  
Raul M. Luque ◽  
Manuel D. Gahete ◽  
Ute Hochgeschwender ◽  
Rhonda D. Kineman

Corticosterone and total ghrelin levels are increased in somatostatin (SST) knockout mice ( Sst −/−) compared with SST-intact controls ( Sst +/+). Because exogenous ghrelin can increase glucocorticoids, the question arises whether elevated levels of ghrelin contribute to elevated corticosterone levels in Sst −/− mice. We report that Sst −/− mice had elevated mRNA levels for pituitary proopiomelanocortin (POMC), the precursor of adrenocorticotropic hormone (ACTH), whereas mRNA levels for hypothalamic corticotropin-releasing hormone (CRH) did not differ from Sst +/+ mice. Furthermore, SST suppressed pituitary POMC mRNA levels and ACTH release in vitro independently of CRH actions. In contrast, it has been reported that ghrelin increases glucocorticoids via a central effect on CRH secretion and that n-octanoyl ghrelin is the form of ghrelin that activates the GHS-R1a and modulates CRH neuronal activity. Consistent with elevations in total ghrelin levels, Sst −/− mice displayed an increase in stomach ghrelin mRNA levels, whereas hypothalamic and pituitary expression of ghrelin was not altered. Despite the increase in total ghrelin levels, circulating levels of n-octanoyl ghrelin were not altered in Sst −/− mice. Because glucocorticoids and ghrelin increase in response to fasting, we examined the impact of fasting on the adrenal axis and ghrelin in Sst +/+ and Sst −/− mice and found that endogenous SST does not significantly contribute to this adaptive response. We conclude that endogenous SST inhibits basal ghrelin gene expression in a tissue specific manner and independently and directly inhibits pituitary ACTH synthesis and release. Thus endogenous SST exerts an inhibitory effect on ghrelin synthesis and on the adrenal axis through independent pathways.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1267
Author(s):  
María Cristina Garcia-Mendez ◽  
Victor Hugo Urrutia-Baca ◽  
Carlos A. Cuao-Moreu ◽  
Ernesto Lorenzo-Bonet ◽  
Melvyn Alvarez-Vera ◽  
...  

Cobalt–chromium (Co-Cr) alloys have been used in a wide variety of biomedical applications, including dental, cardiovascular, and orthopedic devices. In vitro studies have shown that the mineralization of cells involved in osteogenesis is regulated by boron. The development of a new cobalt-chromium-boron (Co-Cr-B) alloy improves the mechanical properties of the metal, such as wear resistance, and meets biocompatibility requirements. Therefore, the objective of this study was to evaluate the osteogenic differentiation and biocompatibility in in vitro assays. Human dental pulp mesenchymal cells (hDPSCs) were isolated from volunteers and then co-cultured with the Co-Cr plus boron alloy from 0.3% to 1% for 15 days, while the formation of calcium deposits was quantified by Alizarin red staining and the expression of genes was related to osteodifferentiation by RT-qPCR. Simultaneously, the cytotoxicity of our alloy was evaluated by MTT assay and the change in the gene expression of cytokines commonly associated with inflammatory processes. The results showed low cytotoxicity when cells were treated with the Co-Cr-B alloy, and no change in the gene expression of IL-1β, TNF-α, IL-6, and IL-8 was observed compared to the untreated control (p > 0.05). The osteoinduction results shown an increase in mineralization in hDPSCs treated with Co-Cr-B alloy with 1.0% B. In addition, a significant increase in mRNA levels for collagen type 1 in with 0.3% boron and alkaline phosphatase and Runx2 with 0.6% boron were observed. The addition of Boron to the ASTM F75 Co-Cr base alloy improves the biocompatible characteristics. No cytotoxicity and any change of the expression of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6, and IL-8 in human peripheral blood mononuclear cells treated with the cobalt-chromium-boron alloy was observed in vitro assays. Furthermore, our alloy acts as an osteoinductive in osteogenic differentiation in vitro. Therefore, our results could set the standard for the development of in vivo trials and in the future, it could be considered as an alternative for regenerative therapy.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Delizhaer Reheman ◽  
Jing Zhao ◽  
Shan Guan ◽  
Guan-Cheng Xu ◽  
Yi-Jie Li ◽  
...  

Abstract Pyrazolone complexes have strong anti-tumor and antibacterial properties, but the anti-tumor mechanism of pyrazolone-based copper complexes has not been fully understood. In this study, the possible mechanism and the inhibitory effect of a novel pyrazolone-based derivative compound [Cu(PMPP-SAL)(EtOH)] on human cervical cancer cells (HeLa cells) was investigated. [Cu(PMPP-SAL)(EtOH)] effectively inhibited proliferation of HeLa cells in vitro with an IC50 value of 2.082 after treatment for 72 h. Cell cycle analysis showed apoptosis was induced by blocking the cell cycle in the S phase. [Cu(PMPP-SAL)(EtOH)] promoted the loss of mitochondrial membrane potential, release of cytochrome c, PARP cleavage, and activation of caspase-3/9 in HeLa cells. Additionally, [Cu(PMPP-SAL)(EtOH)] inhibited the PI3K/AKT pathway and activated the P38/MAPK, and JNK/MAPK pathways. [Cu(PMPP-SAL)(EtOH)] also inhibited the phosphorylation of Iκ-Bα in the NF-κB pathway activated by TNF-α, thus restricting the proliferation of HeLa cells which were activated by TNF-α. In conclusion, [Cu(PMPP-SAL)(EtOH)] inhibited the growth of HeLa cells and induced apoptosis possibly via the caspase-dependent mitochondria-mediated pathway. These results suggest that [Cu(PMPP-SAL)(EtOH)] can be a potential candidate for the treatment of cervical cancer.


2016 ◽  
Vol 22 (8) ◽  
pp. 682-695 ◽  
Author(s):  
Qin Yang ◽  
Maren J Pröll ◽  
Dessie Salilew-Wondim ◽  
Rui Zhang ◽  
Dawit Tesfaye ◽  
...  

Pulmonary alveolar macrophages (AMs) are important in defense against bacterial lung inflammation. Cluster of differentiation 14 (CD14) is involved in recognizing bacterial lipopolysaccharide (LPS) through MyD88-dependent and TRIF pathways of innate immunity. Sulforaphane (SFN) shows anti-inflammatory activity and suppresses DNA methylation. To identify CD14 epigenetic changes by SFN in the LPS-induced TRIF pathway, an AMs model was investigated in vitro. CD14 gene expression was induced by 5 µg/ml LPS at the time point of 12 h and suppressed by 5 µM SFN. After 12 h of LPS stimulation, gene expression was significantly up-regulated, including TRIF, TRAF6, NF-κB, TRAF3, IRF7, TNF-α, IL-1β, IL-6, and IFN-β. LPS-induced TRAM, TRIF, RIPK1, TRAF3, TNF-α, IL-1β and IFN-β were suppressed by 5 µM SFN. Similarly, DNMT3a expression was increased by LPS but significantly down-regulated by 5 µM SFN. It showed positive correlation of CD14 gene body methylation with in LPS-stimulated AMs, and this methylation status was inhibited by SFN. This study suggests that SFN suppresses CD14 activation in bacterial inflammation through epigenetic regulation of CD14 gene body methylation associated with DNMT3a. The results provide insights into SFN-mediated epigenetic down-regulation of CD14 in LPS-induced TRIF pathway inflammation and may lead to new methods for controlling LPS-induced inflammation in pigs.


Endocrinology ◽  
1997 ◽  
Vol 138 (3) ◽  
pp. 1224-1231 ◽  
Author(s):  
Ursula B. Kaiser ◽  
Andrzej Jakubowiak ◽  
Anna Steinberger ◽  
William W. Chin

Abstract The hypothalamic hormone, GnRH, is released and transported to the anterior pituitary in a pulsatile manner, where it binds to specific high-affinity receptors and regulates gonadotropin biosynthesis and secretion. The frequency of GnRH pulses changes under various physiological conditions, and varying GnRH pulse frequencies have been shown to regulate differentially the secretion of LH and FSH and the expression of the gonadotropin α, LHβ, and FSHβ subunit genes in vivo. We demonstrate differential effects of varying GnRH pulse frequency in vitro in superfused primary monolayer cultures of rat pituitary cells. Cells were treated with 10 nm GnRH pulses for 24 h at a frequency of every 0.5, 1, 2, or 4 h. α, LHβ, and FSHβ messenger RNA (mRNA) levels were increased by GnRH at all pulse frequencies. α and LHβ mRNA levels and LH secretion were stimulated to the greatest extent at a GnRH pulse frequency of every 30 min, whereas FSHβ mRNA levels and FSH secretion were stimulated maximally at a lower GnRH pulse frequency, every 2 h. GnRH receptor (GnRHR) mRNA levels also were increased by GnRH at all pulse frequencies and were stimulated maximally at a GnRH pulse frequency of every 30 min. Similar results were obtained when the dose of each pulse of GnRH was adjusted to maintain a constant total cumulative dose of GnRH over 24 h. These data show that gonadotropin subunit gene expression is regulated differentially by varying GnRH pulse frequencies in vitro, suggesting that the differential effects of varying GnRH pulse frequencies on gonadotropin subunit gene expression occur directly at the level of the pituitary. The pattern of regulation of GnRHR mRNA levels correlated with that of α and LHβ but was different from that of FSHβ. This suggests that α and LHβ mRNA levels are maximally stimulated when GnRHR levels are relatively high, whereas FSHβ mRNA levels are maximally stimulated at lower levels of GnRHR expression, and that the mechanism for differential regulation of the gonadotropins by varying pulse frequencies of GnRH may involve levels of GnRHR. Furthermore, these data suggest that the mechanisms whereby varying GnRH pulse frequencies stimulate α, LHβ, and GnRHR gene expression are similar, whereas the stimulation of FSHβ mRNA levels may be different.


Sign in / Sign up

Export Citation Format

Share Document