scholarly journals Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice

2012 ◽  
Vol 302 (10) ◽  
pp. E1183-E1188 ◽  
Author(s):  
Nabanita S. Datta ◽  
Tareq A. Samra ◽  
Abdul B. Abou-Samra

Activation of G protein-coupled receptors by agonists leads to receptor phosphorylation, internalization of ligand receptor complexes, and desensitization of hormonal response. The role of parathyroid hormone (PTH) receptor 1, PTHR1, is well characterized and known to regulate cellular responsiveness in vitro. However, the role of PTHR1 phosphorylation in bone formation is yet to be investigated. We have previously demonstrated that impaired internalization and sustained cAMP stimulation of phosphorylation-deficient (PD) PTHR1 leads to exaggerated cAMP response to subcutaneous PTH infusion in a PD knockin mouse model. To understand the physiological role of receptor internalization on PTH bone anabolic action, we examined bone parameters of wild-type (WT) and PD knockin female and male mice following PTH treatment. We found a decrease in total and diaphyseal bone mineral density in female but not in male PD mice compared with WT controls at 3–6 mo of age. This effect was attenuated at older age groups. PTH administration displayed increased bone volume and trabecular thickness in the vertebrae and distal femora of both WT and PD animals. These results suggest that PTHR1 phosphorylation does not play a major role in the anabolic action of PTH.

2018 ◽  
Vol 67 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Tomoka Hasegawa ◽  
Tomomaya Yamamoto ◽  
Sadaoki Sakai ◽  
Yukina Miyamoto ◽  
Hiromi Hongo ◽  
...  

Summary Intermittent administration of human parathyroid hormone (1-34) (hPTH(1-34)) promotes anabolic action in bone by stimulating bone remodeling, while eldecalcitol, an analog of active vitamin D3, suppresses osteoclastic bone resorption, and forms new bone by minimodeling. We have examined the biological effects of combined administration of eldecalcitol and hPTH(1-34) on 9-week-old Wistar rats that underwent an ovariectomy (OVX) or Sham operation. They were divided into a Sham group, OVX with vehicle (OVX group), OVX with 10 µg/kg/day of hPTH(1-34) (PTH group), OVX with 20 ng/kg/day of eldecalcitol (eldecalcitol group) or OVX with 10 μg/kg/day of hPTH(1-34), and 20 ng/kg/day of eldecalcitol (combined group) for 4 or 8 weeks. As a consequence, the combined group showed a marked increase in bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) than OVX and had the highest bone mineral density (BMD) compared with other groups. OVX and PTH groups exhibited a high osteoblastic surface/bone surface (Ob.S/BS), mineral apposition rate (MAR), and bone formation rate/bone surface (BFR/BS) indices and many TRAP-reactive osteoclasts. Contrastingly, eldecalcitol and combined groups tended to attenuate the indices of osteoclastic surface/bone surface (Oc.S/BS) and Ob.S/BS than that the other groups. The combined group revealed histological profiles of minimodeling- and remodeling-based bone formation. Thus, the combined administration of eldecalcitol and hPTH(1-34) augments their anabolic effects by means of minimodeling and remodeling.


2018 ◽  
Vol 239 (3) ◽  
pp. 303-312 ◽  
Author(s):  
H H Farman ◽  
K L Gustafsson ◽  
P Henning ◽  
L Grahnemo ◽  
V Lionikaite ◽  
...  

The importance of estrogen receptor α (ERα) for the regulation of bone mass in males is well established. ERα mediates estrogenic effects both via nuclear and membrane-initiated ERα (mERα) signaling. The role of mERα signaling for the effects of estrogen on bone in male mice is unknown. To investigate the role of mERα signaling, we have used mice (Nuclear-Only-ER; NOER) with a point mutation (C451A), which results in inhibited trafficking of ERα to the plasma membrane. Gonadal-intact male NOER mice had a significantly decreased total body areal bone mineral density (aBMD) compared to WT littermates at 3, 6 and 9 months of age as measured by dual-energy X-ray absorptiometry (DEXA). High-resolution microcomputed tomography (µCT) analysis of tibia in 3-month-old males demonstrated a decrease in cortical and trabecular thickness in NOER mice compared to WT littermates. As expected, estradiol (E2) treatment of orchidectomized (ORX) WT mice increased total body aBMD, trabecular BV/TV and cortical thickness in tibia compared to placebo treatment. E2 treatment increased these skeletal parameters also in ORX NOER mice. However, the estrogenic responses were significantly decreased in ORX NOER mice compared with ORX WT mice. In conclusion, mERα is essential for normal estrogen signaling in both trabecular and cortical bone in male mice. Increased knowledge of estrogen signaling mechanisms in the regulation of the male skeleton may aid in the development of new treatment options for male osteoporosis.


2022 ◽  
Vol 12 (2) ◽  
pp. 316-322
Author(s):  
Meng-Sheng Song ◽  
Xiao Yu ◽  
Peng-Ze Rong ◽  
Qing-Jiang Pang

Objectives: To compare the effects of signaling-selective parathyroid hormone analogs [G1, R19]hPTH(1–28) [GR(1–28)] and [G1, R19]hPTH(1–34) [GR(1–34)] on osteoporotic osteocyte apoptosis, and to explore the mechanism of the anti-osteoporotic difference. Methods: The osteoporosis model was established in eighty adult female C57BL/6 mice aged 12 weeks. The mice were subcutaneously administered with GR(1–28) and GR(1–34) 5 days per week for 8 weeks. Bilateral femur samples were collected at 4 and 8 weeks, and micro-computed tomography (CT), H&E staining and immunohistochemical staining analyses were performed. Results: From micro-CT analysis, GR(1–34) increased proximal femoral bone mineral density (BMD) and relative bone volume (BV/TV), which was higher than GR(1–28) did. In addition, more trabecular number (Tb.N), thinner trabecular thickness (Tb.Th) and wider trabecular separation (Tb.Sp) were measured at week 8 using GR(1–34). From H&E and immunohistochemical staining, a stronger apoptosis inhibition was induced by GR(1–34) with more Bcl-2 secretion but less Bax expression, as opposed to GR(1–28). Conclusions: GR(1–34) shows better anti-osteoporotic effects than GR(1–28), which appears to be attributed to the activation of the PLC-independent PKC signaling pathway triggered by the former, inhibiting osteocyte apoptosis through up-regulation of Bcl-2 and down-regulation of Bax to increase bone mass and improving trabecular bone microstructure to enhance bone quality by reducing trabecular number, increasing trabecular thickness and trabecular space.


1977 ◽  
Vol 232 (6) ◽  
pp. E535
Author(s):  
B Haldimann ◽  
J P Bonjour ◽  
H Fleisch

The effect of calcium deprivation on the various calcium fluxes was studied in growing rats either sham-operated (SHAM), thyroparathyroidectomized (TPTX), or thyroparathyroidectomized and supplemented with parathyroid hormone (PTH) (TPTX + PTH). In SHAM rats a decrease in the net absorption of calcium (Vna) has no influence on calcemia or on bone formation (Vo+), but leads to an increase in bone resorption (Vo-). In TPTX rats a decrease in Vna induces a decrease in calcemia and in Vo+ but still causes an increase in Vo-. The same is true in TPTX + PTH rats although all the variables measured are increased. In TPTX rats, both without and with PTH, a linear correlation exists between calcemia and Vo+ suggesting that calcemia influences bone formation. Furthermore, it appears that PTH is important in regulating bone turnover, but that the adaptation of Vo- to a change in Vna can occur in the absence or in the presence of a constant amount of this hormone. The mechanism of regulating this adaptation of bone resorption is still unknown.


1972 ◽  
Vol 55 (2) ◽  
pp. 245-252 ◽  
Author(s):  
D. N. KALU ◽  
CARMEL HILLYARD ◽  
G. V. FOSTER

SUMMARY The effect of glucagon on bone was studied in rats. Urinary hydroxyproline excretion and incorporation of [3H]proline into bone hydroxyproline were used as indices of bone collagen breakdown and formation respectively. Parathyroid extract (15 USP units/rat/h, i.v.), infused into thyroparathyroidectomized animals, increased urinary hydroxyproline excretion. This increase was nullified by simultaneous administration of glucagon (50 μg/rat/h, i.v.). Rats treated with glucagon for 12 days (30 μg/100 g/day, s.c.) excreted slightly less hydroxyproline in their urine than controls. In both intact and thyroparathyroidectomized rats, glucagon (10 μg/100 g/h, s.c.) decreased incorporation of [3H]proline into bone. Similar results were obtained in nephrectomized rats, evidence that changes produced by glucagon were not solely due to alterations in proline pool size caused by increased renal excretion. From these data it is concluded that: (1) glucagon can inhibit bone resorption (the effect being slight in normal rats, but easily demonstrable in parathyroid hormone-treated thyroparathyroidectomized rats), (2) release of endogenous calcitonin is not required to produce this effect, (3) parathyroid hormone and glucagon may act on the same target cell in bone, (4) inhibition of skeletal resorption may contribute to glucagon-induced hypocalcaemia, and (5) the hormone possibly decreases bone formation. Since pharmacological doses of glucagon were used in our studies, the relationship of the observations made to the physiological role of glucagon is unknown.


2010 ◽  
Vol 298 (3) ◽  
pp. E714-E725 ◽  
Author(s):  
Binu K. Philip ◽  
Paul J. Childress ◽  
Alexander G. Robling ◽  
Aaron Heller ◽  
Peter P. Nawroth ◽  
...  

Parathyroid hormone (PTH) restores bone mass to the osteopenic skeleton, but significant questions remain as to the underlying mechanisms. The receptor for advanced glycation end products (RAGE) is a multiligand receptor of the immunoglobulin superfamily; however, recent studies indicate a role in bone physiology. We investigated the significance of RAGE to hormone-induced increases in bone by treating 10-wk-old female Rage-knockout (KO) and wild-type (WT) mice with human PTH-(1–34) at 30 μg·kg−1·day−1 or vehicle control, 7 days/wk, for 7 wk. PTH produced equivalent relative gains in bone mineral density (BMD) and bone mineral content (BMC) throughout the skeleton in both genotypes. PTH-mediated relative increases in cortical area of the midshaft femur were not compromised in the null mice. However, the hormone-induced gain in femoral cancellous bone was significantly attenuated in Rage-KO mice. The loss of RAGE impaired PTH-mediated increases in femoral cancellous bone volume, connectivity density, and trabecular number but did not impact increases in trabecular thickness or decreases in trabecular spacing. Disabling RAGE reduced femoral expression of bone formation genes, but their relative PTH-responsiveness was not impaired. Neutralizing RAGE did not attenuate vertebral cancellous bone response to hormone. Rage-null mice exhibited an attenuated accrual rate of bone mass, with the exception of the spine, and an enhanced accrual rate of fat mass. We conclude that RAGE is necessary for key aspects of the skeleton's response to anabolic PTH. Specifically, RAGE is required for hormone-mediated improvement of femoral trabecular architecture but not intrinsically necessary for increasing cortical thickness.


2015 ◽  
Vol 113 (6) ◽  
pp. 909-922 ◽  
Author(s):  
Yuxu Feng ◽  
Min Zhou ◽  
Qunhu Zhang ◽  
Huan Liu ◽  
Yong Xu ◽  
...  

In the present study, we investigated whether high dietary Ca and exogenous parathyroid hormone 1–34 fragments (PTH 1–34) have synergistic effects on bone formation in adult mice, and explored the related mechanisms. Adult male mice were fed a normal diet, a high-Ca diet, a PTH-treated diet, or a high-Ca diet combined with subcutaneously injected PTH 1–34 (80 μg/kg per d) for 4 weeks. Bone mineral density, trabecular bone volume, osteoblast number, alkaline phosphatase (ALP)- and type I collagen-positive areas, and the expression levels of osteoblastic bone formation-related genes and proteins were increased significantly in mice fed the high-Ca diet, the PTH-treated diet, and, even more dramatically, the high-Ca diet combined with PTH. Osteoclast number and surface and the ratio of receptor activator for nuclear factor-κB ligand (RANKL):osteoprotegerin (OPG) were decreased in the high-Ca diet treatment group, increased in the PTH treatment group, but not in the combined treatment group. Furthermore, third-passage osteoblasts were treated with high Ca (5 mm), PTH 1–34 (10− 8m) or high Ca combined with PTH 1–34. Osteoblast viability and ALP activity were increased in either the high Ca-treated or PTH-treated cultures and, even more dramatically, in the cultures treated with high Ca plus PTH, with consistent up-regulation of the expression levels of osteoblast proliferation and differentiation-related genes and proteins. These results indicate that dietary Ca and PTH play synergistic roles in promoting osteoblastic bone formation by stimulating osteoblast proliferation and differentiation.


1998 ◽  
Vol 12 (1) ◽  
pp. 71-75 ◽  
Author(s):  
S. Williams ◽  
A. Wakisaka ◽  
Q.Q. Zeng ◽  
J. Barnes ◽  
S. Seyedin ◽  
...  

The effect of oral minocycline on osteopenia in ovariectomized (OVX) old rats was examined in this study. Rats were divided into 4 groups: sham-operated, OVX followed by treatment with vehicle, minocycline, or 17β-estradiol. The treatment was initiated one day after OVX and proceeded for 8 wks. OVX reduced bone mineral density (BMD) in the whole femur and in the femoral regions that are enriched in trabecular bone. Treatment with minocycline or estrogen prevented a decrease in BMD. Femoral trabecular bone area, trabecular number, and trabecular thickness were reduced, and trabecular separation was increased by OVX. Treatment with minocycline or estrogen abolished the detrimental effects induced by OVX. OVX also reduced indices that reflect the interconnectivity of trabecular bone, and the loss of trabecular connectivity was prevented by treatment with minocycline or estrogen. Based on the levels of urinary pyridinoline, we showed that the effect of estrogen, but not minocycline, was primarily through its inhibitory effect on bone resorption. Analysis of bone turnover activity suggests that OVX increased parameters associated with bone resorption (eroded surface) and formation (osteoid surface, mineralizing surface, mineral apposition rate, and bone formation rate). Treatment with minocycline reduced bone resorption modestly and stimulated bone formation substantially. In contrast, treatment with estrogen drastically reduced parameters associated with both bone resorption and formation. We have concluded that oral minocycline can effectively prevent the decrease in BMD and trabecular bone through its dual effects on bone resorption and formation.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1201 ◽  
Author(s):  
Yunia Rakhmatia ◽  
Yasunori Ayukawa ◽  
Akihiro Furuhashi ◽  
Kiyoshi Koyano

The purpose of this study was to evaluate the feasibility of using apatite blocks fabricated by a dissolution–precipitation reaction of preset gypsum, with or without statin, to enhance bone formation during socket healing after tooth extraction. Preset gypsum blocks were immersed in a Na3PO4 aqueous solution to make hydroxyapatite (HA) low crystalline and HA containing statin (HAFS), or in a mixed solution of Na2HPO4 and NaHCO3 to make carbonate apatite (CO) and CO containing statin (COFS). The right mandibular incisors of four-week-old male Wistar rats were extracted and the sockets were filled with one of the bone substitutes or left untreated as a control (C). The animals were sacrificed at two and four weeks. Areas in the healing socket were evaluated by micro-computed tomography (micro-CT) and histological analyses. The bone volume, trabecular thickness, and trabecular separation were greatest in the COFS group, followed by the CO, HAFS, HA, and C groups. The bone mineral density of the COFS group was greater than that of the other groups when evaluated in the vertical plane. The results of this study suggest that COFS not only allowed, but also promoted, bone healing in the socket. This finding could be applicable for alveolar bone preservation after tooth extraction.


Sign in / Sign up

Export Citation Format

Share Document