scholarly journals The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet

2020 ◽  
Vol 318 (5) ◽  
pp. E765-E778 ◽  
Author(s):  
Caleb J. Worker ◽  
Wencheng Li ◽  
Cheng-yuan Feng ◽  
Lucas A. C. Souza ◽  
Ariana Julia B. Gayban ◽  
...  

We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Caleb J Worker ◽  
Wencheng Li ◽  
Yumei Feng

We recently reported that the (pro)renin receptor (PRR) is a key component of the brain renin-angiotensin system, mediating the majority of Ang II formation, and plays a pivotal role in the development of hypertension. Its importance in obesity-related metabolic syndrome is, however, unknown. We hypothesize that brain PRR plays a regulatory role in high-fat diet (HFD) induced metabolic syndrome. To test our hypothesis, neuron-specific PRR knockout (PRRKO) mice and wildtype (WT) littermates were fed with either HFD (60% calories from fat) or normal fat chow (NFD, 10% calories from fat) with matching calories for 16 weeks. Weekly body weight (BW) and monthly fasting blood glucose (FBG) measurements were recorded and end point glucose tolerance (GTT) and insulin sensitivity tests (IST) were performed. Blood pressure (BP) was recorded using radiotelemetry in conscious free moving mice. We observed no difference in BW or food intake between genotypes in either HFD or NFD. The baseline BP and heart rate (HR) were similar between PRRKO and WT mice; however, following 16 weeks HFD the BP (101±6 vs. 111±3 mmHg, P=0.035) and HR (536±12 vs. 578±4 BPM, P=0.046) were significantly lower in PRRKO compared with WT mice. Interestingly, neuronal PRR deletion attenuated the elevation of FBG (127.12±10.46 vs. 167.77±16.57 mg/dl, P=0.039) induced by HFD. Glucose tolerance was significantly improved in PRRKO compared with WT following 16 weeks of HFD (AUC: 20557±894 vs. 29994±2976, P=0.006), while there was no difference in the IST between the groups. We also found that HFD mice had higher levels of plasma (pro)renin (9.95±1.83 vs. 2.74± 0.47 ng/ml, P=0.005) and brain angiotensin II (656.8±94.9 vs. 375.3±32.0 pg/g, P=0.02), as well as higher cardiac (ΔHR to propranolol: -150±6 vs. -82±15 bpm , P=0.0054) and vasomotor (ΔBP to chlorisondamine: -44±3 vs. -22±3 mmHg, P=0.0004) sympathetic tone, suggesting that the HFD-induced rise in BP is sympathetically mediated and associated with elevation of brain angiotensin II. Our data indicates that PRR deletion in the neurons protects against glucose intolerance and BP elevation in HFD mice with no effect on insulin sensitivity or body weight. We conclude that neuronal PRR plays a role in the development of obesity-related metabolic syndrome.


2018 ◽  
Vol 314 (5) ◽  
pp. H1061-H1069 ◽  
Author(s):  
Yu-Ping Zhang ◽  
Yan-Li Huo ◽  
Zhi-Qin Fang ◽  
Xue-Fang Wang ◽  
Jian-Dong Li ◽  
...  

Accumulating evidence indicates that maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular disease in adult offspring. The present study tested the hypothesis that maternal HFD modulates the brain renin-angiotensin system (RAS), oxidative stress, and proinflammatory cytokines that alter angiotensin II (ANG II) and TNF-α actions and sensitize the ANG II-elicited hypertensive response in adult offspring. All offspring were cross fostered by dams on the same or opposite diet to yield the following four groups: offspring from normal-fat control diet-fed dams suckled by control diet-fed dams (OCC group) or by HFD-fed dams (OCH group) and offspring from HFD-fed dams fed a HFD suckled by control diet-fed dams (OHC group) or by HFD-fed dams (OHH group). RT-PCR analyses of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAS components, NADPH oxidase, and proinflammatory cytokines in 10-wk-old male offspring of dams fed a HFD during either pregnancy, lactation, or both (OHC, OCH, and OHH groups). These offspring also showed decreased cardiac baroreflex sensitivity and increased pressor responses to intracerebroventricular microinjection of either ANG II or TNF-α. Furthermore, chronic systemic infusion of ANG II resulted in enhanced upregulation of mRNA expression of RAS components, NADPH oxidase, and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented hypertensive response in the OHC, OCH, and OHH groups compared with the OCC group. The results suggest that maternal HFD blunts cardiac baroreflex function and enhances pressor responses to ANG II or proinflammatory cytokines through upregulation of the brain RAS, oxidative stress, and inflammation. NEW & NOTEWORTHY The results of our study indicate that a maternal high-fat diet during either pregnancy or lactation is sufficient for perinatal programming of sensitization for hypertension, which is associated with hyperreactivity of central cardiovascular nuclei that, in all likelihood, involves elevated expression of the renin-angiotensin system, NADPH oxidase, and proinflammatory cytokines. The present study demonstrates, for the first time, the central mechanism underlying maternal high-fat diet sensitization of the hypertensive response in adult offspring.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Gu ◽  
Shengjie Fan ◽  
Gaigai Liu ◽  
Lu Guo ◽  
Xiaobo Ding ◽  
...  

Wax gourd is a popular vegetable in East Asia. In traditional Chinese medicine, wax gourd peel is used to prevent and treat metabolic diseases such as hyperlipidemia, hyperglycemia, obesity, and cardiovascular disease. However, there is no experimental evidence to support these applications. Here, we examined the effect of the extract of wax gourd peel (EWGP) on metabolic disorders in diet-induced C57BL/6 obese mice. In the preventive experiment, EWGP blocked body weight gain and lowered serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), liver TG and TC contents, and fasting blood glucose in mice fed with a high-fat diet. In the therapeutic study, we induced obesity in the mice and treated with EWGP for two weeks. We found that EWGP treatment reduced serum and liver triglyceride (TG) contents and fasting blood glucose and improved glucose tolerance in the mice. Reporter assay and gene expression analysis showed that EWGP could inhibit peroxisome proliferator-activated receptorγ(PPARγ) transactivities and could decrease mRNA levels of PPARγand its target genes. We also found that HMG-CoA reductase (HMGCR) was downregulated in the mouse liver by EWGP. Our data suggest that EWGP lowers hyperlipidemia of C57BL/6 mice induced by high-fat diet via the inhibition of PPARγand HMGCR signaling.


2014 ◽  
Vol 92 (5) ◽  
pp. 405-417 ◽  
Author(s):  
Xian-Wei Li ◽  
Yan Liu ◽  
Wei Hao ◽  
Jie-Ren Yang

Sequoyitol decreases blood glucose, improves glucose intolerance, and enhances insulin signaling in ob/ob mice. The aim of this study was to investigate the effects of sequoyitol on diabetic nephropathy in rats with type 2 diabetes mellitus and the mechanism of action. Diabetic rats, induced with a high-fat diet and a low dose of streptozotocin, and were administered sequoyitol (12.5, 25.0, and 50.0 mg·(kg body mass)−1·d−1) for 6 weeks. The levels of fasting blood glucose (FBG), serum insulin, blood urea nitrogen (BUN), and serum creatinine (SCr) were measured. The expression levels of p22phox, p47phox, NF-κB, and TGF-β1 were measured using immunohistochemisty, real-time PCR, and (or) Western blot. The total antioxidative capacity (T-AOC), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined. The results showed that sequoyitol significantly decreased FBG, BUN, and SCr levels, and increased the insulin levels in diabetic rats. The level of T-AOC was significantly increased, while ROS and MDA levels and the expression of p22phox, p47phox, NF-κB, and TGF-β1 were decreased with sequoyitol treatment both in vivo and in vitro. These results suggested that sequoyitol ameliorates the progression of diabetic nephropathy in rats, as induced by a high-fat diet and a low dose of streptozotocin, through its glucose-lowering effects, antioxidant activity, and regulation of TGF-β1 expression.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Matthew R Peterson ◽  
Samantha Haller ◽  
Tracy Ta ◽  
Luiza Bosch ◽  
Aspen Smith ◽  
...  

NLR family, pyrin domain-containing 3 (NLRP3) is a pattern recognition receptor responsible for perpetuating an inflammatory response through production of pro-inflammatory cytokines IL-1β and IL-18. It has been implicated in the sustained inflammatory response in obesity and multiple cardiovascular disease conditions. In order to investigate NLRP3 as a potential therapeutic target in metabolic syndrome, C57BL/6 wild-type (WT) and NLRP3 knockout (NLRP3-\-) mice were fed a normal diet (ND; 12% fat chow) or a high fat diet (HFD; 45% fat chow) for 5 months. At 5 months, echocardiography and glucose tolerance tests (GTTs) were performed. Cardiac function assessed by fractional shortening (FS) was significantly impaired by HFD feeding in the WT group (0.335 HFD vs. 0.456 ND; p<0.05) but not in the NLRP3-\- (0.449 HFD vs. 0.492 ND; p>0.05). FS was higher in NLRP3-\-HFD than in WT-HFD (p<0.05). Two-dimensional analysis shows the FS difference between NLRP3-\-HFD and WT-HFD was primarily explained by the difference in left ventricular end-systolic dimension (0.2716 cm WT vs. 0.1883 cm NLRP3-\-; p<0.05). Glucose tolerance measured by area under the curve (AUC) was significantly impaired by HFD feeding for both WT (23183 ND vs. 57298 HFD; p<0.001) and NLRP3-\- (23197 ND vs. 44626 HFD; p<0.001), but significantly better in the NLRP3-\-HFD than in WT-HFD (p<0.01). HFD feeding increased fasting blood glucose (FBG) for both WT (97.7 mg . dl -1 ND vs. 164.7 mg . dl -1 HFD; p<0.01) and NLRP3-\- (80.50 mg . dl -1 ND vs. 108.8 mg . dl -1 HFD; p<0.05), but significantly less in NLRP3-\- mice (NLRP3-\- vs. WT; p<0.05). For GTTs, body weight was significantly higher in the WT than NLRP3-\- fed HFD (47.93 g vs. 36.5 g; p<0.001). Body weight explained 92% of variation in glucose tolerance (p<0.0001) and 69% of variation in fasting blood glucose (p<0.0001). WT-HFD averaged 1.31X heavier than NLRP3-\-HFD, while the AUC for the IGTT was 1.28X larger for the WT-HFD than NLRP3-\-HFD. Body weights were not significantly different between genotypes at the time of echo. The results suggest that knockout of NLRP3 may be protective against HFD induced cardiovascular dysfunction. A protective effect on glucose tolerance is not strongly supported.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Varunkumar G Pandey ◽  
Lars Bellner ◽  
Victor Garcia ◽  
Joseph Schragenheim ◽  
Andrew Cohen ◽  
...  

20-HETE (20-Hydroxyeicosatetraenoic acid) is a cytochrome P450 ω-hydroxylase metabolite of arachidonic acid that promotes endothelial dysfunction, microvascular remodeling and hypertension. Previous studies have shown that urinary 20-HETE levels correlate with BMI and plasma insulin levels. However, there is no direct evidence for the role of 20-HETE in the regulation of glucose metabolism, obesity and type 2 diabetes mellitus. In this study we examined the effect of 20-SOLA (2,5,8,11,14,17-hexaoxanonadecan-19-yl-20-hydroxyeicosa-6(Z),15(Z)-dienoate), a water-soluble 20-HETE antagonist, on blood pressure, weight gain and blood glucose in Cyp4a14 knockout (Cyp4a14-/-) mice fed high-fat diet (HFD). The Cyp4a14-/- male mice exhibit high vascular 20-HETE levels and display 20-HETE-dependent hypertension. There was no difference in weight gain and fasting blood glucose between Cyp4a14-/- and wild type (WT) on regular chow. When subjected to HFD for 15 weeks, a significant increase in weight was observed in Cyp4a14-/- as compared to WT mice (56.5±3.45 vs. 30.2±0.7g, p<0.05). Administration of 20-SOLA (10mg/kg/day in drinking water) significantly attenuated the weight gain (28.7±1.47g, p<0.05) and normalized blood pressure in Cyp4a14-/- mice on HFD (116±0.3 vs. 172.7±4.6mmHg, p<0.05). HFD fed Cyp4a14-/- mice exhibited hyperglycemia as opposed to normal glucose levels in WT on a HFD (154±1.9 vs. 96.3±3.0 mg/dL, p<0.05). 20-SOLA prevented the HFD-induced hyperglycemia in Cyp4a14-/- mice (91±8mg/dL, p<0.05). Plasma insulin levels were markedly high in Cyp4a14-/- mice vs. WT on HFD (2.66±0.7 vs. 0.58±0.18ng/mL, p<0.05); corrected by the treatment with 20-SOLA (0.69±0.09 ng/mL, p<0.05). Importantly, glucose and insulin tolerance tests showed impaired glucose homeostasis and insulin resistance in Cyp4a14-/- mice on HFD; ameliorated by treatment with 20-SOLA. This novel finding that blockade of 20-HETE actions by 20-SOLA prevents HFD-induced obesity and restores glucose homeostasis in Cyp4a14-/- mice suggests that 20-HETE contributes to obesity, hyperglycemia and insulin resistance in HFD induced metabolic disorder. The molecular mechanisms underlying 20-HETE mediated metabolic dysfunction are being currently explored.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Sumit Bhattacharyya ◽  
Leo Feferman ◽  
Terry Unterman ◽  
Joanne K. Tobacman

Aims. Major aims were to determine whether exposure to the commonly used food additive carrageenan could induce fasting hyperglycemia and could increase the effects of a high fat diet on glucose intolerance and dyslipidemia.Methods. C57BL/6J mice were exposed to either carrageenan, high fat diet, or the combination of high fat diet and carrageenan, or untreated, for one year. Effects on fasting blood glucose, glucose tolerance, lipid parameters, weight, glycogen stores, and inflammation were compared.Results. Exposure to carrageenan led to glucose intolerance by six days and produced elevated fasting blood glucose by 23 weeks. Effects of carrageenan on glucose tolerance were more severe than from high fat alone. Carrageenan in combination with high fat produced earlier onset of fasting hyperglycemia and higher glucose levels in glucose tolerance tests and exacerbated dyslipidemia. In contrast to high fat, carrageenan did not lead to weight gain. In hyperinsulinemic, euglycemic clamp studies, the carrageenan-exposed mice had higher early glucose levels and lower glucose infusion rate and longer interval to achieve the steady-state.Conclusions. Carrageenan in the Western diet may contribute to the development of diabetes and the effects of high fat consumption. Carrageenan may be useful as a nonobese model of diabetes in the mouse.


2017 ◽  
Vol 125 (09) ◽  
pp. 610-617 ◽  
Author(s):  
Zhaohui Zeng ◽  
Wang He ◽  
Zhen Jia ◽  
Shu Hao

AbstractIn the past few years, metabolic disorders, such as type 2 diabetes and metabolic syndrome, have reached global prevalence. Lycopene is one of the major carotenoids in tomatoes, watermelons, red grapefruits, and guava. In the current study, using high fat diet (HFD)-fed mice, we investigated the effect of Lycopene on insulin resistance. We showed that diet containing Lycopene significantly prevented HFD-induced increase of fasting blood glucose and insulin level, glucose and insulin intolerance, and decrease of hepatic glycogen content. We found that Lycopene notably prevented the increase of IL-1β, TNFα and CRP levels in mice fed HFD. We showed that Lycopene improved the lipid profiles in HFD-fed mice, as evidenced by decrease of systemic and hepatic TC, TG and LDL, and increase of HDL. Lycopene suppressed the increase of the expression of Srebp-1c, FAS and ACC-1 in mice fed HFD. The administration of Lycopene notably prevented the expression and phosphorylation of STAT3 in livers of mice induced by HFD. The treatment of adenovirus carrying STAT3 significantly suppressed the decrease of Srebp-1c expression induced by Lycopene. Furthermore, enhancement of STAT3 signaling by adenovirus markedly blocked the reduction of fasting blood glucose and insulin level. In conclusion, in the current study, we found that Lycopene prevented STAT3 signaling and inhibited Srebp-1c and downstream gene expression, resulting in inhibition of lipid accumulation, inflammation, insulin resistance and metabolic dysfunction. Overall, the data in the study provide better understanding of the beneficial effects of Lycopene against insulin resistance and metabolic disorder.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Na Li ◽  
Qun Liu ◽  
Xiao-Juan Li ◽  
Xiao-Hui Bai ◽  
Yue-Yun Liu ◽  
...  

The mechanism of depression with type 2 diabetes remains elusive, requiring further study.Objective. To evaluate the effect of TCM formula Xiaoyaosan on depressive-like behaviors in rats with type 2 diabetes.Methods. Rats were divided into 5 groups and drugs were administered during the model period of 21 days. The model of depressive-like behaviors in rats with type 2 diabetes was induced by a high fat diet, low doses of STZ injection, and chronic restraint stress for 21 days. The body weight, fasting blood glucose, ITT, OGTT, 5-HT, DA, depression behaviors, and morphological changes of formation were measured and observed.Results. After modeling, marked changes were found in model rats; behavioral analyses of rats indicated that this modeling method negatively impacts locomotor function. In the H&E staining, changes were found predominately in the CA1 and DG subregions of the hippocampus. After 21 days of treatment by fluoxetine and Xiaoyaosan, rats’ body weights, behaviors and fasting blood glucose, and hippocampal formation were modified.Conclusions. A new model of depressive-like behaviors in rats with type 2 diabetes was successfully created. Xiaoyaosan and fluoxetine in this study independently contribute to exacerbate the disease progression.


Sign in / Sign up

Export Citation Format

Share Document