Muscle mitochondrial morphology, body composition, and energy expenditure in sedentary individuals

1991 ◽  
Vol 260 (1) ◽  
pp. E89-E94 ◽  
Author(s):  
S. P. Kirkwood ◽  
F. Zurlo ◽  
K. Larson ◽  
E. Ravussin

To investigate whether differences in metabolic rate are related to differences in muscle mitochondrial morphology and/or to differences in in vitro muscle respiration, we studied 17 healthy Caucasians, covering a wide range of body weight and composition [9 males, 8 females; body wt 96 +/- 37 (SD) kg; body fat = 28 +/- 10%]. Central and peripheral mitochondrial volume density (Vmit c and Vmit p, respectively) and the ratio of mitochondrial outer surface to volume of mitochondria (SVmit c in center and SVmit p at periphery) were determined by stereological analyses of transmission electron micrographs from samples of the vastus lateralis. There was no relationship between mitochondrial morphology or muscle respiration and 24-h energy expenditure, basal metabolic rate, or sleeping energy expenditure adjusted for differences in fat-free mass, fat mass, age, and sex. Although total body fat was not associated with muscle cell morphology, central distribution of body fat [waist-to-thigh circumference ratio (W/T)] correlated negatively with Vmit c (r = -0.58, P = 0.01), SVmit c (r = -0.59, P = 0.01), and SVmit p (r = -0.48, P = 0.05). W/T was also negatively related to muscle respiration (r = -0.59, P = 0.01). Despite the lack of relationship between metabolic rate and muscle mitochondrial morphology, central distribution of body fat is associated with lower mitochondrial density and larger mitochondria in skeletal muscle and is associated with a decreased oxidative capacity of muscle.

2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


2007 ◽  
Vol 293 (4) ◽  
pp. C1302-C1308 ◽  
Author(s):  
A. Valle ◽  
R. Guevara ◽  
F. J. García-Palmer ◽  
P. Roca ◽  
J. Oliver

Caloric restriction (CR) without malnutrition has been shown to increase maximal life span and delay the rate of aging in a wide range of species. It has been proposed that reduction in energy expenditure and oxidative damage may explain the life-extending effect of CR. Sex-related differences also have been shown to influence longevity and energy expenditure in many mammalian species. The aim of the present study was to determine the sex-related differences in rat liver mitochondrial machinery, bioenergetics, and oxidative balance in response to short-term CR. Mitochondria were isolated from 6-mo-old male and female Wistar rats fed ad libitum or subjected to 40% CR for 3 mo. Mitochondrial O2 consumption, activities of the oxidative phosphorylation system (complexes I, III, IV, and V), antioxidative activities [MnSOD, glutathione peroxidase (GPx)], mitochondrial DNA and protein content, mitochondrial H2O2 production, and markers of oxidative damage, as well as cytochrome C oxidase and mitochondrial transcription factor A levels, were measured. Female rats showed a higher oxidative capacity and GPx activity than males. This sexual dimorphism was not modified by CR. Restricted rats showed slightly increased oxygen consumption, complex III activity, and GPx antioxidant activity together with lower levels of oxidative damage. In conclusion, the sexual dimorphism in liver mitochondrial oxidative capacity was unaffected by CR, with females showing higher mitochondrial functionality and ROS protection than males.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


PEDIATRICS ◽  
1995 ◽  
Vol 95 (1) ◽  
pp. 89-95
Author(s):  
Michael I. Goran ◽  
Mary Kaskoun ◽  
Rachel Johnson ◽  
Charlene Martinez ◽  
Benson Kelly ◽  
...  

Objective. Epidemiologic studies suggest that Native Americans, including the Mohawk people, have a high prevalence of obesity, diabetes, and cardiovascular risk. However, current information on alterations in related variables such as energy metabolism and body composition in Native Americans is almost exclusively limited to already obese Pima adults living in the Southwest. The aim of this study was to characterize energy metabolism and body composition in young Mohawk children (17 girls, 11 boys; aged 4 to 7 years) as compared to Caucasian children (36 girls, 34 boys; aged 4 to 7 years). Total energy expenditure was measured by doubly labeled water, postprandial resting energy expenditure by indirect calorimetry, and activity energy expenditure was derived from the difference between total and resting energy expenditure. Fat and fat free mass were estimated from bioelectrical resistance, and body fat distribution was estimated from skinfolds and circumferences. Results. There were no significant effects of ethnic background or sex on body weight, height, or body mass index. Fat free mass was significantly higher in boys and fat mass was significantly higher in girls, with no effect of ethnic background. Chest skinfold thickness, the ratio of trunk skinfolds:extremity skinfolds, and the waist:hip ratio were significantly higher in Mohawk children by 2.5 mm, 0.09 units, and 0.03 units, respectively, independent of sex and fat mass. Total energy expenditure was significantly higher in Mohawk children compared to Caucasian (100 kcal/day in girls, 150 kcal/day in boys), independent of fat free mass and sex, due to a significantly higher physical activity-related energy expenditure. Conclusion. These data suggest that: 1) body fat is more centrally distributed in Mohawk relative to Caucasian children, and this effect is independent of sex and body fat content; 2) Mohawk children have a greater total energy expenditure than Caucasian children, independent of fat free mass, due to greater physical activity-related energy expenditure.


Author(s):  
Heidi K. Byrne ◽  
Jack H. Wilmore

The present study was designed to investigate the effects of exercise training on resting metabolic rate (RMR) in moderately obese women. It was hypothesized that exercise training would increase resting metabolic rate. Nineteen previously sedentary, moderately obese women (age = 38.0 ± 0.9 years, percent body fat = 37.5 ± 0.8) trained for 20 weeks using either resistance training (RT) or a combination of resistance training arid walking (RT/W). The high intensity resistance training program was designed to increase strength and fat-free mass and the walking program to increase aerobic capacity. There was also a non-exercising control group (C) of 9 subjects in this study. Fat-free mass was significantly increased in both the RT (+1.90 kg) and RT/W (+1.90 kg) groups as a result of the training program. No group showed significant changes in fat mass or relative body fat from pre- to post-training. Aerobic capacity was slightly, though significantly, increased in the RT/W group only. The RT group showed a significant increase (+44 kcal · day−1), while the RT/W group showed a significant decrease (-53 kcal · day−1) in resting metabolic rate post-training. RT can potentiate an increase in RMR through an increase in fat-free mass, and the decrease in RMR in the RT/W group may have been a result of heat acclimation from the walk training.


2000 ◽  
Vol 98 (5) ◽  
pp. 587-592 ◽  
Author(s):  
Patrick SCHRAUWEN ◽  
Ellen E. BLAAK ◽  
Dorien P. C. van AGGEL-LEIJSSEN ◽  
Lars B. BORGHOUTS ◽  
Anton J. M. WAGENMAKERS

When using 13C or 14C tracers to study substrate metabolism, an acetate correction factor should be applied to correct for loss of label in the exchange pathways of the tricarboxylic acid cycle. We have shown recently that the [13C]acetate recovery factor has a high inter-individual variability and should therefore be determined in every subject. In the present study we examined the factors that might explain some of the variability between subjects in acetate recovery factor. Data were pooled from four different studies with identical protocols, in which the acetate recovery factor was measured, prior to an intervention, to correct plasma fatty acid oxidation rates. Acetate recovery was measured after 2 h of [1,2-13C]acetate infusion at rest followed by 1 h of cycling exercise at 40–50% of maximal oxygen uptake. Inter-individual variance in acetate recovery was 12.0% at rest and 16.1% during exercise. Stepwise regression revealed that, at rest, 37.1% of the acetate recovery could be accounted for by basal metabolic rate adjusted for fat-free mass, percentage body fat and respiratory quotient (RQ). During exercise, 69.1% of the variance in acetate recovery could be accounted for by energy expenditure adjusted for fat-free mass, % body fat and RQ. In conclusion, we show that the acetate recovery factor has a high inter-individual variability, both at rest and during exercise, which can partly be accounted for by metabolic rate, RQ and % body fat. These data indicate that the acetate recovery factor needs to be determined in every subject, under similar conditions as used for the tracer-derived determination of substrate oxidation. Failure to do this might result in large under- or over-estimation of plasma substrate oxidation, and hence to artificial differences between groups.


1989 ◽  
Vol 256 (5) ◽  
pp. E573-E579 ◽  
Author(s):  
K. R. Segal ◽  
I. Lacayanga ◽  
A. Dunaif ◽  
B. Gutin ◽  
F. X. Pi-Sunyer

To clarify further the independent relationships of body composition parameters to energy expenditure, resting metabolic rate (RMR) and postprandial thermogenesis were studied in four groups who were matched for absolute fat mass (study 1) and relative fatness (study 2). In study 1, five lean [group A, 15.4 +/- 0.6% (+/- SE) body fat] and five obese men (group B, 25.0 +/- 0.9% fat) were matched on body fat mass (13.0 +/- 0.9 vs. 14.4 +/- 0.8 kg, respectively). Fat-free mass (FFM) and total weight were greater for group A than B. RMR was measured for 3 h in the fasted state and after a 720-kcal mixed meal. RMR was greater for group A than B (1.38 +/- 0.08 vs. 1.14 +/- 0.04 kcal/min, P less than 0.05). The thermic effect of food, calculated as 3 h postprandial minus fasting RMR, was greater for group A than B (65 +/- 6 vs. 23 +/- 9 kcal/3 h; P less than 0.05). In study 2, two groups (n = 6 men/group) were matched for percent body fat (33 +/- 1% fat for both) but differed in lean, fat, and total weights: 50.8 +/- 3.1 kg FFM for the lighter (group C) vs. 68.0 +/- 2.8 kg FFM for the heavier (group D) group, P less than 0.05. RMR was lower for group C than D (1.17 +/- 0.06 vs. 1.33 +/- 0.04 kcal/min, P less than 0.05), but the thermic effect of food was not significantly different (31 +/- 3 vs. 20 +/- 6 kcal/3 h).(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 72 (9-10) ◽  
pp. 272-279
Author(s):  
Danijel Slavic ◽  
Dea Karaba-Jakovljevic ◽  
Andrea Zubnar ◽  
Borislav Tapavicki ◽  
Tijana Aleksandric ◽  
...  

Introduction. The difference between 24-hour daily energy intake and total daily energy expenditure determines whether we lose or gain weight. The resting metabolic rate is the major component of daily energy expenditure, which depends on many different factors, but also on the level of physical activity. The aim of the study was to determine anthropometric and metabolic parameters of athletes engaged in different types of training, to compare obtained results and to examine whether there are statistically significant differences among them. Material and Methods. The study included a total of 42 young male athletes divided into two groups. The first group included 21 athletes who were predominantly engaged in aerobic type of training, and the other group of 21 athletes in anaerobic type of training. Anthropometric measurements were taken and resting metabolic rate was assessed using the indirect calorimetry method. The results were statistically analyzed and the differences in parameters between the two groups were compared. Results. Statistically significant differences were established in total body mass, amount of fat-free mass and muscle mass, body mass index, as well as in the relative metabolic indices between two groups of subjects. Conclusion. The percentage of fat-free body mass has the greatest impact on the resting metabolic rate. The rate of metabolic activity of this body compartment is higher in athletes engaged in aerobic than in athletes engaged in anaerobic type of training.


1995 ◽  
Vol 268 (5) ◽  
pp. E917-E924 ◽  
Author(s):  
M. I. Goran ◽  
W. H. Carpenter ◽  
A. McGloin ◽  
R. Johnson ◽  
J. M. Hardin ◽  
...  

We evaluated whether children of obese parents have defects in energy expenditure in a study of 73 children (5 +/- 0.9 yr of age) of lean and obese parents. Total energy expenditure (TEE) was measured over 14 days by use of doubly labeled water and physical activity energy expenditure (AEE) derived by subtracting resting energy expenditure (REE) under postprandial conditions. Fat and fat-free mass (FFM) were measured in children and parents with use of bioelectrical resistance. There were no significant correlations between TEE, REE, or AEE in children (after adjustment for FFM) and body fat in children or body fat in mothers or fathers. In three-way analysis of covariance (ANCOVA, with FFM as a covariate), there were no significant effects of gender in children, obesity in mothers, or obesity in fathers on TEE or AEE in children. There was a significant effect of gender and a significant interaction between obesity in mothers and obesity in fathers on REE; relative to children with two nonobese or two obese parents, REE was approximately 6% lower in children when mothers only or fathers only were obese. In conclusion, our data do not support the hypothesis that children of obese parents have major defects in energy expenditure.


1994 ◽  
Vol 267 (5) ◽  
pp. E732-E737 ◽  
Author(s):  
A. M. Fontvieille ◽  
R. Rising ◽  
M. Spraul ◽  
D. E. Larson ◽  
E. Ravussin

Differences in sleeping metabolic rate (SMR) among subjects may be related to different levels of energy expenditure associated with sleep stages. The relationship between energy expenditure and sleep stages was investigated overnight in 29 subjects (14 Caucasians and 15 Pima Indians, 18 males and 11 females; mean +/- SD, 31 +/- 7 yr, 83 +/- 26 kg, 27 +/- 11% fat). Sleep stages were determined by electroencephalogram recording, whereas energy expenditure was measured in a 1,000-liter Plexiglas sleep box constructed around a bed as a fast-response open-circuit indirect calorimeter. Eighty-five percent of the interindividual variability in SMR was explained by differences in fat-free mass, fat mass, age, sex, and race (r2 = 0.85). The intra-individual variance in SMR over time was related to sleep stages and to clock time. Within subjects, SMR in stage 3 was significantly lower than in stage 2 (-39 +/- 18 kcal/day; P < 0.05) and rapid eye movement sleep (-51 +/- 23 kcal/day; P < 0.05). Also, sleep stages were associated with different respiratory quotients. Because sleep stages are associated with only small differences in energy metabolism, our results suggest that sleep stages play a minor role in the variance of SMR among subjects. However, the duration of sleep may contribute to the variability of 24-h energy expenditure.


Sign in / Sign up

Export Citation Format

Share Document