scholarly journals Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background

2017 ◽  
Vol 312 (1) ◽  
pp. G15-G23 ◽  
Author(s):  
Milena Saqui-Salces ◽  
Amy C. Tsao ◽  
Merritt G. Gillilland ◽  
Juanita L. Merchant

The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM.

2020 ◽  
Vol 319 (1) ◽  
pp. E203-E216
Author(s):  
Jereon Zoll ◽  
Mark N. Read ◽  
Sarah E. Heywood ◽  
Emma Estevez ◽  
Jessica P. S. Marshall ◽  
...  

Studies suggest the gut microbiota contributes to the development of obesity and metabolic syndrome. Exercise alters microbiota composition and diversity and is protective of these maladies. We tested whether the protective metabolic effects of exercise are mediated through fecal components through assessment of body composition and metabolism in recipients of fecal microbiota transplantation (FMT) from exercise-trained (ET) mice fed normal or high-energy diets. Donor C57BL/6J mice were fed a chow or high-fat, high-sucrose diet (HFHS) for 4 wk to induce obesity and glucose intolerance. Mice were divided into sedentary (Sed) or ET groups (6 wk treadmill-based ET) while maintaining their diets, resulting in four donor groups: chow sedentary (NC-Sed) or ET (NC-ET) and HFHS sedentary (HFHS-Sed) or ET (HFHS-ET). Chow-fed recipient mice were gavaged with feces from the respective donor groups weekly, creating four groups (NC-Sed-R, NC-ET-R, HFHS-Sed-R, HFHS-ET-R), and body composition and metabolism were assessed. The HFHS diet led to glucose intolerance and obesity in the donors, whereas exercise training (ET) restrained adiposity and improved glucose tolerance. No donor group FMT altered recipient body composition. Despite unaltered adiposity, glucose levels were disrupted when challenged in mice receiving feces from HFHS-fed donors, irrespective of donor-ET status, with a decrease in insulin-stimulated glucose clearance into white adipose tissue and large intestine and specific changes in the recipient’s microbiota composition observed. FMT can transmit HFHS-induced disrupted glucose metabolism to recipient mice independently of any change in adiposity. However, the protective metabolic effect of ET on glucose metabolism is not mediated through fecal factors.


2019 ◽  
Vol 97 (9) ◽  
pp. 3845-3858 ◽  
Author(s):  
Mathilde Le Sciellour ◽  
Olivier Zemb ◽  
Isabelle Hochu ◽  
Juliette Riquet ◽  
Hélène Gilbert ◽  
...  

Abstract The present study aimed at investigating the impact of heat challenges on gut microbiota composition in growing pigs and its relationship with pigs’ performance and thermoregulation responses. From a total of 10 F1 sire families, 558 and 564 backcross Large White × Créole pigs were raised and phenotyped from 11 to 23 wk of age in temperate (TEMP) and in tropical (TROP) climates, respectively. In TEMP, all pigs were subjected to an acute heat challenge (3 wk at 29 °C) from 23 to 26 wk of age. Feces samples were collected at 23 wk of age both in TEMP and TROP climate (TEMP23 and TROP23 samples, respectively) and at 26 wk of age in TEMP climate (TEMP26 samples) for 16S rRNA analyses of fecal microbiota composition. The fecal microbiota composition significantly differed between the 3 environments. Using a generalized linear model on microbiota composition, 182 operational taxonomic units (OTU) and 2 pathways were differentially abundant between TEMP23 and TEMP26, and 1,296 OTU and 20 pathways between TEMP23 and TROP23. Using fecal samples collected at 23 wk of age, pigs raised under the 2 climates were discriminated with 36 OTU using a sparse partial least square discriminant analysis that had a mean classification error-rate of 1.7%. In contrast, pigs in TEMP before the acute heat challenge could be discriminated from the pigs in TEMP after the heat challenge with 32 OTU and 9.3% error rate. The microbiota can be used as biomarker of heat stress exposition. Microbiota composition revealed that pigs were separated into 2 enterotypes. The enterotypes were represented in both climates. Whatever the climate, animals belonging to the Turicibacter–Sarcina–Clostridium sensu stricto dominated enterotype were 3.3 kg heavier (P < 0.05) at 11 wk of age than those belonging to the Lactobacillus-dominated enterotype. This latter enterotype was related to a 0.3 °C lower skin temperature (P < 0.05) at 23 wk of age. Following the acute heat challenge in TEMP, this enterotype had a less-stable rectal temperature (0.34 vs. 0.25 °C variation between weeks 23 and 24, P < 0.05) without affecting growth performance (P > 0.05). Instability of the enterotypes was observed in 34% of the pigs, switching from an enterotype to another between 23 and 26 wk of age after heat stress. Despite a lower microbial diversity, the Turicibacter–Sarcina–Clostridium sensu stricto dominated enterotype was better adapted to heat stress conditions with lower thermoregulation variations.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2446
Author(s):  
Rebecca O’Rielly ◽  
Hui Li ◽  
See Meng Lim ◽  
Roger Yazbeck ◽  
Stamatiki Kritas ◽  
...  

Chronic isoleucine supplementation prevents diet-induced weight gain in rodents. Acute-isoleucine administration improves glucose tolerance in rodents and reduces postprandial glucose levels in humans. However, the effect of chronic-isoleucine supplementation on body weight and glucose tolerance in obesity is unknown. This study aimed to investigate the impact of chronic isoleucine on body weight gain and glucose tolerance in lean and high-fat-diet (HFD) induced-obese mice. Male C57BL/6-mice, fed a standard-laboratory-diet (SLD) or HFD for 12 weeks, were randomly allocated to: (1) Control: Drinking water; (2) Acute: Drinking water with a gavage of isoleucine (300 mg/kg) prior to the oral-glucose-tolerance-test (OGTT) or gastric-emptying-breath-test (GEBT); (3) Chronic: Drinking water with 1.5% isoleucine, for a further six weeks. At 16 weeks, an OGTT and GEBT was performed and at 17 weeks metabolic monitoring. In SLD- and HFD-mice, there was no difference in body weight, fat mass, and plasma lipid profiles between isoleucine treatment groups. Acute-isoleucine did not improve glucose tolerance in SLD- or HFD-mice. Chronic-isoleucine impaired glucose tolerance in SLD-mice. There was no difference in gastric emptying between any groups. Chronic-isoleucine did not alter energy intake, energy expenditure, or respiratory quotient in SLD- or HFD-mice. In conclusion, chronic isoleucine supplementation may not be an effective treatment for obesity or glucose intolerance.


2003 ◽  
Vol 284 (6) ◽  
pp. E1131-E1139 ◽  
Author(s):  
Gabriella Segal-Lieberman ◽  
Daniel J. Trombly ◽  
Viral Juthani ◽  
Xiaomei Wang ◽  
Eleftheria Maratos-Flier

Neuropeptide Y (NPY) is an orexigenic (appetite-stimulating) peptide that plays an important role in regulating energy balance. When administered directly into the central nervous system, animals exhibit an immediate increase in feeding behavior, and repetitive injections or chronic infusions lead to obesity. Surprisingly, initial studies of Npy−/− mice on a mixed genetic background did not reveal deficits in energy balance, with the exception of an attenuation in obesity seen in ob/ob mice in which the NPY gene was also deleted. Here, we show that, on a C57BL/6 background, NPY ablation is associated with an increase in body weight and adiposity and a significant defect in refeeding after a fast. This impaired refeeding response in Npy−/− mice resulted in a deficit in weight gain in these animals after 24 h of refeeding. These data indicate that genetic background must be taken into account when the biological role of NPY is evaluated. When examined on a C57BL/6 background, NPY is important for the normal refeeding response after starvation, and its absence promotes mild obesity.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Fang Yang ◽  
Jennifer A. A. DeLuca ◽  
Rani Menon ◽  
Erika Garcia-Vilarato ◽  
Evelyn Callaway ◽  
...  

Abstract Background Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. Results Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. Conclusions Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.


2020 ◽  
Vol 318 (6) ◽  
pp. E965-E980 ◽  
Author(s):  
Arianne Morissette ◽  
Camille Kropp ◽  
Jean-Philippe Songpadith ◽  
Rafael Junges Moreira ◽  
Janice Costa ◽  
...  

Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.


2015 ◽  
Vol 100 (11) ◽  
pp. 1024-1027 ◽  
Author(s):  
Charlotte M Wright ◽  
Anna Chillingworth

Background and aimsMany children referred to a tertiary feeding clinic are already taking high-energy oral nutritional supplements (HEOS), but these often seem not clinically useful. We undertook a retrospective review of all children on HEOS at the time of referral to the clinic in order to describe their subsequent progress in terms of growth and feeding behaviour.ResultsA total of 48 children were on HEOS at referral and withdrawal of HEOS was attempted in 38 children, aged median 3.0 years (range 0.7–10 years) who were taking volumes equivalent to 2/3 of total daily energy requirements. The children tended to be very short and slim (median height SD score (SDS) −2.0 (range −5.7 to 1.9); body mass index −2.0 (−5.1 to 1.9)). Half had normal neurodevelopment (ND) but 4 (11%) had learning disability and 4 (11%) severe ND problems. By last follow-up after 0.86 (0–2.9) years, 30 (79%) had stopped all feeds. Those who stopped had a mean (SD) change in weight of 0.08 (0.6) SDS (range −0.88 to +1.59). Five children (17%) showed significant catch-up weight gain after stopping feeds, of whom three had been referred for weight faltering and possible tube feeding. Improvement in feeding behaviour was documented in 76% (29).ConclusionsThe use of HEOS in children suppresses appetite for solid food due to energy compensation. In some cases, HEOS may perpetuate or even cause weight faltering. It should not be assumed that failure to respond to HEOS is an indication for tube feeding.


Sign in / Sign up

Export Citation Format

Share Document