Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: insights from novel microvascular wall models

2012 ◽  
Vol 302 (3) ◽  
pp. H567-H581 ◽  
Author(s):  
Gerd Juchem ◽  
Dominik R. Weiss ◽  
Maria Knott ◽  
Anton Senftl ◽  
Stefan Förch ◽  
...  

We hypothesized that postcapillary venules play a central role in the control of the tightness of the coronary system as a whole, particularly under inflammatory conditions. Sandwich cultures of endothelial cells and pericytes of precapillary arteriolar or postcapillary venular origin from human myocardium as models of the respective vascular walls (sandwich cultures of precapillary arteriolar or postcapillary venular origin) were exposed to thrombin and components of the acutely activatable inflammatory system, and their hydraulic conductivity ( LP) was registered. LP of SC-PAO remained low under all conditions (3.24 ± 0.52·10−8cm·s−1·cmH2O−1). In contrast, in the venular wall model, PGE2, platelet-activating factor (PAF), leukotriene B4 (LTB4), IL-6, and IL-8 induced a prompt, concentration-dependent, up to 10-fold increase in LP with synergistic support when combined. PAF and LTB4 released by metabolically cooperating platelets, and polymorphonuclear leucocytes (PMNs) caused selectively venular endothelial cells to contract and to open their clefts widely. This breakdown of the barrier function was preventable and even reversible within 6–8 h by the presence of 50 μM quercetin glucuronide (QG). LTB4 synthesis was facilitated by biochemical involvement of erythrocytes. Platelets segregated in the arterioles and PMNs in the venules of blood-perfused human myocardium (histological studies on donor hearts refused for heart transplantation). Extrapolating these findings to the coronary microcirculation in vivo would imply that the latter's complex functionality after accumulation of blood borne inflammatory mediators can change rapidly due to selective breakdown of the postcapillary venular barrier. The resulting inflammatory edema and venulo-thrombosis will severely impair myocardial performance. The protection afforded by QG could be of particular relevance in the context of cardiosurgical intervention.

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M Aslam ◽  
H Idrees ◽  
C W Hamm ◽  
Y Ladilov

Abstract Background The integrity of the endothelial cell barrier of the microvasculature is compromised by inflammation. The increased vascular permeability leads to tissue injury and organ dysfunction. In recent years, considerable advances have been made in the understanding of signalling mechanisms regulating the endothelial barrier integrity. The role of endothelial metabolism as a modulator of endothelial barrier integrity is not yet well-studied. The aim of the present study was to investigate the effect of inflammation on endothelial metabolism and its role in the maintenance of endothelial barrier integrity. Methods The study was carried out on cultured human umbilical vein endothelial cells and rat coronary microvascular endothelial cells. Inflammatory condition was simulated by treating cells with low concentrations (1 ng/mL) of TNFα for 24h. Endothelial barrier function was analysed by measuring the flux of albumen through endothelial monolayers cultured on filter membranes. Gene expression was analysed by qPCR-based assays. The capacity of endothelial cells for maximal ATP synthesis rate was investigated by the real-time live-cell imaging using FRET-based ATP-biosensor (live cell FRET). Total cellular ATP concentration was measured using luminescence-based commercial kit (ATPLite, PerkinElmer). Mitochondrial mass was analysed by the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA). The cellular glucose uptake was measured by fluorescent microscopy using a fluorescent analogue of glucose (2-NBDG). Results Treatment of human endothelial cells with TNFα resulted in significant suppression of mitochondrial and upregulation of glycolytic ATP synthesis rate, suggesting a metabolic switch. This was accompanied by a reduction in mitochondrial content (mtDNA/nDNA), reduction in total cellular ATP levels, an enhanced expression of glycolytic enzymes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and phosphofructokinase 1 (PFK1), and enhanced glucose uptake by endothelial cells (n=5; p<0.05 for all parameters tested). Moreover, TNFα caused a 3-fold increase in endothelial permeability. Pharmacological inhibition of glycolysis either by partial replacement of glucose with 2-deoxy glucose (2DG) or an inhibition of PFKFB3 resulted in further worsening (a 5-fold increase in permeability) of TNFα-induced endothelial barrier failure. On the other hand pharmacological activation of AMPK, a potent inducer of mitochondrial biogenesis, could attenuate TNFα-induced but not 2DG-induced endothelial hyperpermeability. Conclusion The study demonstrates that TNFα induces metabolic switch towards glycolysis in endothelial cells. Moreover, the data suggest that upregulation of glycolysis may serve as an endogenous metabolic adaptation to the TNFα-induced suppression of mitochondrial ATP synthesis, which protects endothelial barrier integrity. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Justus-Liebig University GiessenDZHK (German Centre for Cardiovascular Research), partner site Rhein-Main, Bad Nauheim, Germany


2016 ◽  
Vol 90 (17) ◽  
pp. 7789-7797 ◽  
Author(s):  
Chan-Wang J. Lio ◽  
Bryan McDonald ◽  
Mariko Takahashi ◽  
Rekha Dhanwani ◽  
Nikita Sharma ◽  
...  

ABSTRACTSeveral innate sensing pathways contribute to the control of early cytomegalovirus (CMV) infection, leading to a multiphasic type I interferon (IFN-I) response that limits viral replication and promotes host defenses. Toll-like receptor (TLR)-dependent pathways induce IFN-I production in CMV-infected plasmacytoid dendritic cells; however, the initial burst of IFN-I that occurs within the first few hoursin vivois TLR independent and emanates from stromal cells. Here we show that primary human endothelial cells mount robust IFN-I responses to human CMV that are dependent upon cyclic GMP-AMP synthase (cGAS), STING, and interferon regulatory factor 3 (IRF3) signaling. Disruption of STING expression in endothelial cells by clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 revealed that it is essential for the induction of IFN-I and restriction of CMV replication. Consistently, STING was necessary to mount the first phase of IFN-I production and curb CMV replication in infected mice. Thus, DNA sensing through STING is critical for primary detection of both human and mouse CMV in nonhematopoietic cells and drives the initial wave of IFN-I that is key for controlling early viral replicationin vivo.IMPORTANCECytomegalovirus (CMV) is one of the most common viral pathogens, with the majority of people contracting the virus in their lifetime. Although acute infection is mostly asymptomatic in healthy persons, significant pathology is observed in immunocompromised individuals, and chronic CMV infection may exacerbate a myriad of inflammatory conditions. Here we show that primary human endothelial cells mount robust IFN-I responses against CMV via a cGAS/STING/IRF3 pathway. Disruption of STING expression by CRISPRs revealed an essential role in eliciting IFN-I responses and restricting CMV replication. Consistently, in mice, STING is necessary for the first phase of IFN-I production that limits early CMV replication. Our results demonstrate a pivotal role for the cGAS-STING pathway in the initial detection of CMV infection.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Bandana Shrestha ◽  
Christopher B Pattillo

Atherosclerosis, a chronic inflammatory disease characterized by plaque formation in vascular walls results in perfusion complications culminating in ischemia and induced angiogenesis. Interestingly, atherosclerosis is known largely to be an arterial disease with a preference in vascular beds, often affecting more arteries than veins. A significantly different pattern exists between the endothelial cells of these major blood vessels, highlighting the possibility of intrinsic differences between arterial and venous micro-environments including vascular endothelial cells themselves leading to variable responses during pathogenesis. Although isolated primary cells have been shown to lose some in-vivo characteristics under cell culture conditions, our data proves that these heterogeneous cell types retain the ability to differentially sense redox states. Oxidative stress is one of the key players associated with progression of atherosclerosis, marked by over-production of reactive oxygen species (ROS) and reduction in endogenous antioxidants such as glutathione (GSH). GSH, a major free radical scavenger prevents ROS damage by reducing ROS while being oxidized into glutathione disulfide (GSSG). GSSG is then recycled back to its reduced form under normal physiological conditions, hence maintaining an optimum GSH:GSSG ratio. This ratio is known to be deregulated during redox imbalance seen with oxidative stress during disease, due to decreasing GSH and increasing GSSG levels. Our experiments using Mouse Aorta Endothelial Cells (MAECs) and mouse Vena Cava Endothelial cells (VCECs) to represent arterial and venous endothelial cells display differences in this GSH:GSSG ratio as well, implicating differential redox states within these vessel types. Additionally, differences in oxidative stress related responses with regards to cell proliferation, migration, adhesion molecule expression and leukocyte recruitment in endothelial cells of arteries and veins further highlight the possibility of drastically different predispositions to atherosclerosis. Thus, endothelial cell heterogeneity between arteries and veins may lead to differential redox profiles and altered physiological functions during oxidative stress.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Bronson A Haynes ◽  
Eric J Lehrer ◽  
Giann J Bhatt ◽  
Ryan W Huyck ◽  
Ashley N James ◽  
...  

The mechanisms underlying vascular dysfunction in adipose tissue (AT) in obesity are not clearly understood. Our hypothesis is that in response to pro-inflammatory cytokines (PIC) present in obese AT, endothelial cells (EC) can de-differentiate and acquire a mesenchymal-like phenotype (EndoMT) that leads to endothelial dysfunction. To test our hypothesis, we measured endothelial and mesenchymal markers of CD31 + CD34 + EC isolated from omental (OM) and subcutaneous (SC) AT of bariatric subjects (BAMVEC) using RT-PCR and western blot. Permeability and oxidative metabolism were determined by ECIS and Seahorse analyzer XF e 24, respectively. BAMVEC isolated from both OM and SC fat showed very low protein expression of vWF and VE-Cadherin (EC markers) and abundantly expressed αSMA and the EMT transcription factor twist-1. To determine effects of PIC on EndoMT, commercially available primary endothelial cells from AT (HAMVEC) were treated in vitro with PIC (2.5ng/mL TNFα, IFNγ and TGFβ) for 1, 3 or 6 days. We found progressive down-regulation by >2-fold (p<0.001) of the EC markers vWF, VE-Cadherin, and Occludin compared to controls. As early as 1 day of PIC treatment twist-1 (p<0.001) and snail1 (p<0.05) showed an increase by >2-fold. Similarly, OM and SC BAMVEC expressed >2-fold increase in the mesenchymal genes twist-1, FSP1, αSMA, and snail1 compared to untreated HAMVEC. Metabolically, BAMVEC had increased ATP production and maximal respiration compared to HAMVEC suggesting increased oxidative phosphorylation, a marker of mesenchymal-like cells. PIC stimulation of HAMVEC yielded significant increases in endothelial permeability and motility (p<0.001). Notably, there were no significant differences in any of the markers between OM and SC BAMVEC. These results show that EC in obese AT exhibit a mesenchymal-like phenotype which may account for functional changes such as increased permeability and migration and are not depot specific. Using primary EC from human AT we showed that prolonged exposure to PIC induces a phenotype similar to CD31+CD34+ EC from obese AT. This supports the concept that AT inflammation can promote EC de-differentiation in vivo and our in vitro model is suitable for future studies to uncover the relevant mechanisms.


2019 ◽  
Vol 20 (8) ◽  
pp. 1819 ◽  
Author(s):  
Norihiko Sasaki ◽  
Yoko Itakura ◽  
Masashi Toyoda

Insulin in physiological concentrations is important to maintain vascular function. Moreover, vascular insulin resistance contributes to vascular impairment. In the elderly, other factors including hypertension, dyslipidemia, and chronic inflammation amplify senescence of vascular endothelial and smooth muscle cells. In turn, senescence increases the risk for vascular-related diseases such as arteriosclerosis, diabetes, and Alzheimer’s disease. Recently, it was found that GM1 ganglioside, one of the glycolipids localized on the cell membrane, mediates vascular insulin resistance by promoting senescence and/or inflammatory stimulation. First, it was shown that increased GM1 levels associated with aging/senescence contribute to insulin resistance in human aortic endothelial cells (HAECs). Second, the expression levels of gangliosides were monitored in HAECs treated with different concentrations of tumor necrosis factor-alpha (TNFα) for different time intervals to mimic in vivo acute or chronic inflammatory conditions. Third, the levels of insulin signaling-related molecules were monitored in HAECs after TNFα treatment with or without inhibitors of ganglioside synthesis. In this review, we summarize the molecular mechanisms of insulin resistance in aged/senescent and TNFα-stimulated endothelial cells mediated by gangliosides and highlight the possible roles of gangliosides in vascular insulin resistance-related diseases.


1991 ◽  
Vol 260 (2) ◽  
pp. H642-H646 ◽  
Author(s):  
H. J. Hsieh ◽  
N. Q. Li ◽  
J. A. Frangos

We have investigated the effect of shear stress on platelet-derived growth factor (PDGF) A and B chain mRNA levels in cultured human umbilical vein endothelial cells (hUVEC). The levels of both PDGF A and B mRNA in hUVEC were increased by a physiological shear stress (16 dyn/cm2), reaching a maximum approximately 1.5-2 h after the onset of shear stress and returning almost to control values at 4 h. The peak levels showed a more than 10-fold enhancement for PDGF A mRNA and a 2- to 3-fold increase for PDGF B mRNA (P less than 0.05). PDGF A mRNA also showed a shear-dependent increase from 0 to 6 dyn/cm2 (P less than 0.05) and then plateaued from 6 to 51 dyn/cm2. PDGF B mRNA levels were elevated as shear stress increased from 0 to 6 dyn/cm2 then declined gradually to a minimum at 31 dyn/cm2 (P less than 0.05) and increased again when shear stress rose to 51 dyn/cm2 (P less than 0.05). PDGF, a potent smooth muscle cell mitogen and vasoconstrictor, released from the endothelium may regulate the blood flow in vivo. The shear stress-dependent elevation of PDGF A and B mRNA in endothelial cells may be involved in the adaptation of blood vessels to flow mediated by the endothelium.


2019 ◽  
Vol 116 (10) ◽  
pp. 4518-4527 ◽  
Author(s):  
Jessica Cait ◽  
Michael R. Hughes ◽  
Matthew R. Zeglinski ◽  
Allen W. Chan ◽  
Sabrina Osterhof ◽  
...  

Podocalyxin (Podxl) is broadly expressed on the luminal face of most blood vessels in adult vertebrates, yet its function on these cells is poorly defined. In the present study, we identified specific functions for Podxl in maintaining endothelial barrier function. Using electrical cell substrate impedance sensing and live imaging, we found that, in the absence of Podxl, human umbilical vein endothelial cells fail to form an efficient barrier when plated on several extracellular matrix substrates. In addition, these monolayers lack adherens junctions and focal adhesions and display a disorganized cortical actin cytoskeleton. Thus, Podxl has a key role in promoting the appropriate endothelial morphogenesis required to form functional barriers. This conclusion is further supported by analyses of mutant mice in which we conditionally deleted a floxed allele ofPodxlin vascular endothelial cells (vECs) using Tie2Cre mice (PodxlΔTie2Cre). Although we did not detect substantially altered permeability in naïve mice, systemic priming with lipopolysaccharide (LPS) selectively disrupted the blood–brain barrier (BBB) inPodxlΔTie2Cremice. To study the potential consequence of this BBB breach, we used a selective agonist (TFLLR-NH2) of the protease-activated receptor-1 (PAR-1), a thrombin receptor expressed by vECs, neuronal cells, and glial cells. In response to systemic administration of TFLLR-NH2, LPS-primedPodxlΔTie2Cremice become completely immobilized for a 5-min period, coinciding with severely dampened neuroelectric activity. We conclude that Podxl expression by CNS tissue vECs is essential for BBB maintenance under inflammatory conditions.


2005 ◽  
Vol 289 (3) ◽  
pp. H1315-H1320 ◽  
Author(s):  
Malgorzata Milkiewicz ◽  
Tara L. Haas

Under physiological nonhypoxic conditions, angiogenesis can be driven by mechanical forces. However, because of the limitations of the specific gene expression analysis of microvessels from in vivo experiments, the mechanisms regulating the coordinated expression of angiogenic factors implicated in the process remain intangible. In this study, the technique of laser capture microdissection (LCM) was adapted for the study of angiogenesis in skeletal muscles. With a combination of LCM and real-time quantitative PCR it was demonstrated that capillary endothelial cells produce matrix metalloproteinase (MMP)-2 and that mechanical stretch of capillaries within muscle tissue markedly increases MMP-2 mRNA (2.5-fold increase vs. control; P < 0.05). In addition, we showed that transcription factor hypoxia-inducible factor (HIF)-1α expression was 13.5-fold higher in capillaries subjected to stretch compared with controls ( P < 0.05). These findings demonstrate the feasibility of this approach to study angiogenic gene regulation and provide novel evidence of HIF-1α induction in stretched capillary endothelial cells.


2001 ◽  
Vol 193 (9) ◽  
pp. 1027-1034 ◽  
Author(s):  
Glenn T. Furuta ◽  
Jerrold R. Turner ◽  
Cormac T. Taylor ◽  
Robert M. Hershberg ◽  
Katrina Comerford ◽  
...  

Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during episodes of intestinal hypoxia. Initial studies examining T84 colonic epithelial cells revealed that barrier function is uniquely resistant to changes elicited by hypoxia. A search for intestinal-specific, barrier-protective factors revealed that the human intestinal trefoil factor (ITF) gene promoter bears a previously unappreciated binding site for hypoxia-inducible factor (HIF)-1. Hypoxia resulted in parallel induction of ITF mRNA and protein. Electrophoretic mobility shift assay analysis using ITF-specific, HIF-1 consensus motifs resulted in a hypoxia-inducible DNA binding activity, and loading cells with antisense oligonucleotides directed against the α chain of HIF-1 resulted in a loss of ITF hypoxia inducibility. Moreover, addition of anti-ITF antibody resulted in a loss of barrier function in epithelial cells exposed to hypoxia, and the addition of recombinant human ITF to vascular endothelial cells partially protected endothelial cells from hypoxia-elicited barrier disruption. Extensions of these studies in vivo revealed prominent hypoxia-elicited increases in intestinal permeability in ITF null mice. HIF-1–dependent induction of ITF may provide an adaptive link for maintenance of barrier function during hypoxia.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3448-3448
Author(s):  
Yang Yang ◽  
Ashley Elizabeth Frith ◽  
Allison Theus ◽  
Veronica Macleod ◽  
Ralph D. Sanderson

Abstract Multiple myeloma is a devastating cancer with a high rate of morbidity and mortality. Our previous in vivo studies demonstrate that both shed syndecan-1 and heparanase can promote myeloma tumor growth, metastasis and angiogenesis. To examine the mechanism underlying this enhanced angiogenesis, human umbilical vein endothelial cells (HUVEC) were cocultured with cells of the CAG myeloma cell line (vector-only controls, CAGcontrol) or CAG cells engineered to express high levels of either soluble syndecan-1 ectodomain (CAGssyn1 ) or heparanase ( CAGHPSE ). After coculture for 48 hours, levels of angiogenic growth factors present in the endothelial cells were examined. The goal was to determine if expression of either soluble syndecan-1 or heparanase by CAG myeloma cells altered growth factor levels relative to those present when control CAG cells were used. Co-culture with CAGssyn1 or CAGHPSE cells did not enhance endothelial levels of FGF-2, while levels of hepatoma-derived growth factor (HDGF) and hepatocyte growth factor (HGF) were elevated in endothelia growing in the presence of CAGssyn1 cells but not CAGHPSE cells or CAGcontrol cells. However, VEGF levels present in endothelial cells were substantially enhanced by the presence of CAGssyn1 (1.9-fold increase) or CAGHPSE cells (1.6-fold increase). Surprisingly, levels of VEGF in conditioned media of cocultures containing either CAGssyn1 or CAGHPSE cells was low. In contrast, when cultured in the absence of HUVECs, VEGF levels were elevated in conditioned media of both CAGssyn1and CAGHPSE cells. Addition of this conditioned media containing high levels of VEGF to HUVECs growing in the absence of CAG cells did not result in an elevation of VEGF levels in the endothelial cells. Together, these experiments suggest that VEGF expression is upregulated in CAG cells expressing high levels of shed syndecan-1 or heparanase and that VEGF becomes associated with the endothelial cells only when they are cultured in the presence of the myeloma cells. This cross-talk between myeloma and endothelial cells may lead to the enhanced angiogenesis that occurs in vivo in tumors formed by myeloma cells producing high levels of shed syndecan-1 and/or heparanase.


Sign in / Sign up

Export Citation Format

Share Document