Upregulation of endothelial cell Ca2+ signaling contributes to pregnancy-enhanced vasodilation of rat uteroplacental arteries

2006 ◽  
Vol 290 (5) ◽  
pp. H2124-H2135 ◽  
Author(s):  
Natalia I. Gokina ◽  
Tara Goecks

Normal pregnancy is characterized by an increased uterine blood flow due to growth and remodeling of the maternal uterine vasculature and enhanced vasodilation of the uterine arteries. The objective of the present study was to examine the role of endothelial cell Ca2+ signaling in augmented endothelium-mediated vasodilation of uteroplacental arteries in late pregnancy. We performed fura-2-based measurements of the intracellular Ca2+ concentration ([Ca2+]i) in the cytoplasm of endothelial cells simultaneously with diameter in pressurized uterine arteries from nonpregnant (NP) and late-pregnant (LP) rats. Basal levels of endothelial cell [Ca2+]i were higher in arteries from LP rats compared with NP controls. Withdrawal of extracellular Ca2+ resulted in a decrease in the level of basal [Ca2+]i that was significantly larger in arteries of LP than NP rats. The rate of Mn2+-induced quenching of fura-2 fluorescence was significantly elevated in late pregnancy, implicating augmented Ca2+ influx as a cause of increased basal levels of [Ca2+]i in endothelial cells. Elevation of intraluminal pressure resulted in a transient increase in endothelial [Ca2+]i that was markedly potentiated in late gestation. ACh-induced [Ca2+]i and vasodilator responses were significantly augmented in arteries of LP compared with NP rats and were abolished by BAPTA treatment, demonstrating a critical role of [Ca2+]i elevation in the production of endothelium-derived vasodilators. Together, these results indicate that late pregnancy is a state of enhanced basal and stimulated Ca2+ signaling in endothelial cells of uterine vessels, which may represent an important underlying mechanism for augmented vasodilation in the maternal uterine circulation.

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhimin Zhang ◽  
Mingzhu Lv ◽  
Xiang Wang ◽  
Zheng Zhao ◽  
Daolong Jiang ◽  
...  

Abstract Background The oncogenic role of the newly identified lncRNA LUADT1 has been revealed in lung adenocarcinoma. It was reported that LUADT1 plays a critical role in multiple human diseases. This study was carried out to investigate the role of LUADT1 in sepsis. Methods Sixty patients with sepsis and sixty healthy volunteers were recruited for this study. Plasma samples were collected from all participants. Human primary coronary artery endothelial cells were also used in this study. The expression of Pim-1, miR-195 and LUADT1 were detected by RT-qPCR. The interaction between miR-195 and LUADT1 was determined by overexpression experiments and luciferase activity assay. Cell apoptosis was detected by flow cytometry. The expression of apoptosis-related protein was detected by Western blotting. Results Bioinformatics analysis revealed the potential interaction between LUADT1 and miR-195, which was confirmed by dual luciferase reporter assay. LUADT1 was downregulated in patients with sepsis. Moreover, LPS treatment downregulated the expression of LUADT1 in primary cardiac endothelial cells. Overexpression of LUADT1 and miR-195 did not affect the expression of each other in primary cardiac endothelial cells. Interestingly, overexpression of LUADT1 was found to upregulate the expression of Pim-1, a target of miR-195. In addition, it was found that overexpression of LUADT1 and Pim-1 reduced the enhancement effects of miR-195 on LPS-induced cardiac endothelial cell apoptosis. Conclusion In summary, LUADT1 may protect cardiac endothelial cells against apoptosis in sepsis by regulating the miR-195/Pim-1 axis.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


2009 ◽  
Vol 296 (3) ◽  
pp. E503-E512 ◽  
Author(s):  
Natalie Z. Burger ◽  
Olga Y. Kuzina ◽  
George Osol ◽  
Natalia I. Gokina

Endothelium-derived hyperpolarizing factor (EDHF) plays an important role in the regulation of vascular microcirculatory tone. This study explores the role of estrogen in controlling EDHF-mediated vasodilation of uterine resistance arteries of the rat and also analyzes the contribution of endothelial cell (EC) Ca2+ signaling to this process. A parallel study was also performed with mesenteric arteries to provide comparison with a nonreproductive vasculature. Mature female rats underwent ovariectomy, with one half receiving 17β-estradiol replacement (OVX+E) and the other half serving as estrogen-deficient controls (OVX). Uterine or mesenteric resistance arteries were harvested, cannulated, and pressurized. Nitric oxide and prostacyclin production were inhibited with 200 μM NG-nitro-l-arginine and 10 μM indomethacin, respectively. ACh effectively dilated the arteries preconstricted with phenylephrine but failed to induce dilation of vessels preconstricted with high-K+ solution. ACh EC50 values were decreased by estrogen replacement by five- and twofold in uterine and mesenteric arteries, respectively. As evidenced by fura-2-based measurements of EC cytoplasmic Ca2+ concentration ([Ca2+]i), estrogen replacement was associated with increased basal and ACh-stimulated EC [Ca2+]i rise in uterine, but not mesenteric, vessels. These data demonstrate that EDHF contributes to endothelium-dependent vasodilation of uterine and mesenteric resistance arteries and that estrogen controls EDHF-related mechanism(s) more efficiently in reproductive vs. nonreproductive vessels. Enhanced endothelial Ca2+ signaling may be an important underlying mechanism in estrogenic modulation of EDHF-mediated vasodilation in small resistance uterine arteries.


Blood ◽  
2006 ◽  
Vol 109 (4) ◽  
pp. 1472-1478 ◽  
Author(s):  
Florian Diehl ◽  
Lothar Rössig ◽  
Andreas M. Zeiher ◽  
Stefanie Dimmeler ◽  
Carmen Urbich

Abstract Posttranslational histone modification by acetylation or methylation regulates gene expression. Here, we investigated the role of the histone lysine methyltransferase MLL for angiogenic functions in human umbilical vein endothelial cells. Suppression of MLL expression by siRNA or incubation with the pharmacologic methyltransferase inhibitor 5′-deoxy-5′-(methylthio)adenosine significantly decreased endothelial-cell migration and capillary sprout formation, indicating that methyltransferase activity is required for proangiogenic endothelial-cell functions. Because the expression of homeodomain transcription factors (Hox) is regulated by MLL, we elucidated the role of Hox gene expression. MLL silencing was associated with reduced mRNA and protein expression of HoxA9 and HoxD3, whereas HoxB3, HoxB4, HoxB5, and HoxB9 were not altered. Overexpression of HoxA9 or HoxD3 partially compensated for impaired migration in MLL siRNA-transfected endothelial cells, suggesting that HoxA9 and HoxD3 both contribute to MLL-dependent migration. As a potential underlying mechanism, MLL siRNA down-regulated mRNA and protein levels of the HoxA9-dependent axon guidance factor EphB4. In contrast, MLL knockdown effects on capillary sprouting were not rescued by HoxA9 or HoxD3 overexpression, indicating that MLL affects additional targets required for 3-dimensional sprout formation. We conclude that MLL regulates endothelial-cell migration via HoxA9 and EphB4, whereas sprout formation requires MLL-dependent signals beyond HoxA9 and HoxD3.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311 ◽  
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Abstract Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Noureddine Idris-Khodja ◽  
Marouene Kheloufi ◽  
Valérie B Schini-Kerth

Endothelial cell senescence promotes endothelial dysfunction, which has been suggested to have a critical role in the initiation and/or progression of atherosclerosis, and also to contribute to the pathogenesis of age-associated vascular disorders. Endothelial senescence is characterized by an irreversible cell cycle arrest, which involves an increased activity of p53 and its downstream effector p21. Endothelial senescence is also associated with a decreased expression of endothelial nitric oxide synthase (eNOS). The present study has evaluated whether the Crataegus special extract WS ® 1442, a rich source of polyphenols and a potent inducer of eNOS activation, prevents replicative senescence of porcine coronary artery endothelial cells, and, if so, to elucidate the underlying mechanism. Replicative senescence was induced by sequential passaging of primary cultures of endothelial cells up to the fourth passage (P4). Changes of endothelial senescence were determined by measuring senescence-associated β-galactosidase (SA-β-gal) activity. Western blot was used to analyze the protein expression of p53, p21 and eNOS. Compared to P1, the SA-β-gal activity was 240% increased in cells at P4 ( P <0.001), and this effect was associated with 93% ( P <0.001) and 56% ( P <0.001) increased expression of p53, p21 and a 87% decreased expression of eNOS ( P <0.001). Treatment of P3 cells with the p53 inhibitor (pifithrin) reduced 43% SA-β-gal activity indicating a role of p53 activity in replicative senescence ( P <0.001). Treatment of endothelial cells with the Crataegus extract reduced by 56% the SA-β-gal activity ( P <0.01), improved by 131 % eNOS expression ( P <0.01) and reduced by 39% the up-regulation of p21 in cells at P4 without affecting the expression level of p53. The inhibitor of eNOS, L-NAME promoted the induction of endothelial senescence at P1 and reduced the inhibitory effect of the Crataegus extract on SA-β-gal activity at P3. In conclusion, the present findings indicate that the Crataegus extract delays endothelial cell replicative senescence most likely by preventing the downregulation of eNOS expression and activity and the upregulation of the p53/p21 pathway.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1843-1850 ◽  
Author(s):  
E Arnaud ◽  
M Lafay ◽  
P Gaussem ◽  
V Picard ◽  
M Jandrot-Perrus ◽  
...  

Abstract An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion- binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration- dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma- thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion- binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.


1996 ◽  
Vol 270 (6) ◽  
pp. L973-L978 ◽  
Author(s):  
A. Siflinger-Birnboim ◽  
H. Lum ◽  
P. J. Del Vecchio ◽  
A. B. Malik

We studied the role of Ca2+ in mediating the hydrogen peroxide (H2O2)-induced increase in endothelial permeability to 125I-labeled albumin using bovine pulmonary microvessel endothelial cells (BMVEC). Changes in cytosolic-free Ca2+ ([Ca2+]i) were monitored in BMVEC monolayers loaded with the Ca(2+)-sensitive membrane permeant fluorescent dye fura 2-AM. H2O2 (100 microM) produced a rise in [Ca2+]i within 10 s that was reduced by the addition of EGTA to the medium. Uptake of 45Ca2+ from the extracellular medium increased in the presence of H2O2 (100 microM) compared with control monolayers, suggesting that the H2O2-induced rise in [Ca2+]i is partly the result of extracellular Ca2+ influx. The effects of [Ca2+]i on endothelial permeability were addressed by pretreatment of BMVEC monolayers with BAPTA-AM (3-5 microM), a membrane permeant Ca2+ chelator, before the H2O2 exposure. BAPTA-AM produced an approximately 50% decrease in the H2O2-induced increase in endothelial permeability compared with endothelial cell monolayers exposed to H2O2 alone. The increase in endothelial permeability was independent of Ca2+ influx, since LaCl3 (0-100 microM), which displaces Ca2+ from binding sites on the cell surface, did not modify the permeability response. These results indicate that the rise in [Ca2+]i produced by H2O2 is a critical determinant of the increase in endothelial permeability.


Sign in / Sign up

Export Citation Format

Share Document