scholarly journals CD40/CD40L contributes to hypercholesterolemia-induced microvascular inflammation

2009 ◽  
Vol 296 (3) ◽  
pp. H689-H697 ◽  
Author(s):  
Karen Y. Stokes ◽  
LeShanna Calahan ◽  
Candiss M. Hamric ◽  
Janice M. Russell ◽  
D. Neil Granger

Hypercholesterolemia is associated with phenotypic changes in endothelial cell function that lead to a proinflammatory and prothrombogenic state in different segments of the microvasculature. CD40 ligand (CD40L) and its receptor CD40 are ubiquitously expressed and mediate inflammatory responses and platelet activation. The objective of this study was to determine whether CD40/CD40L, in particular T-cell CD40L, contributes to microvascular dysfunction induced by hypercholesterolemia. Intravital microscopy was used to quantify blood cell adhesion in cremasteric postcapillary venules, endothelium-dependent vasodilation responses in arterioles, and microvascular oxidative stress in wild-type (WT) C57BL/6, CD40-deficient (−/−), CD40L−/−, or severe combined immune deficient (SCID) mice placed on a normal (ND) or high-cholesterol (HC) diet for 2 wk. WT-HC mice exhibited an exaggerated leukocyte and platelet recruitment in venules and impaired vasodilation responses in arterioles compared with ND counterparts. A deficiency of CD40, CD40L, or lymphocytes attenuated these responses to HC. The HC phenotype was rescued in CD40L−/− and SCID mice by a transfer of WT T cells. Bone marrow chimeras revealed roles for both vascular- and blood cell-derived CD40 and CD40L in the HC-induced vascular responses. Hypercholesterolemia induced an oxidative stress in both arterioles and venules of WT mice, which was abrogated by either CD40 or CD40L deficiency. The transfer of WT T cells into CD40L−/− mice restored the oxidative stress. These results implicate CD40/CD40L interactions between circulating cells and the vascular wall in both the arteriolar and venular dysfunction elicited by hypercholesterolemia and identify T-cell-associated CD40L as a key mediator of these responses.

2020 ◽  
Vol 8 (2) ◽  
pp. e000967 ◽  
Author(s):  
Christopher A Chuckran ◽  
Chang Liu ◽  
Tullia C Bruno ◽  
Creg J Workman ◽  
Dario AA Vignali

Checkpoint blockade immunotherapy established a new paradigm in cancer treatment: for certain patients curative treatment requires immune reinvigoration. Despite this monumental advance, only 20%–30% of patients achieve an objective response to standard of care immunotherapy, necessitating the consideration of alternative targets. Optimal strategies will not only stimulate CD8+ T cells, but concomitantly modulate immunosuppressive cells in the tumor microenvironment (TME), most notably regulatory T cells (Treg cells). In this context, the immunoregulatory receptor Neuropilin-1 (NRP1) is garnering renewed attention as it reinforces intratumoral Treg cell function amidst inflammation in the TME. Loss of NRP1 on Treg cells in mouse models restores antitumor immunity without sacrificing peripheral tolerance. Enrichment of NRP1+ Treg cells is observed in patients across multiple malignancies with cancer, both intratumorally and in peripheral sites. Thus, targeting NRP1 may safely undermine intratumoral Treg cell fitness, permitting enhanced inflammatory responses with existing immunotherapies. Furthermore, NRP1 has been recently found to modulate tumor-specific CD8+ T cell responses. Emerging data suggest that NRP1 restricts CD8+ T cell reinvigoration in response to checkpoint inhibitors, and more importantly, acts as a barrier to the long-term durability of CD8+ T cell-mediated tumor immunosurveillance. These novel and distinct regulatory mechanisms present an exciting therapeutic opportunity. This review will discuss the growing literature on NRP1-mediated immune modulation which provides a strong rationale for categorizing NRP1 as both a key checkpoint in the TME as well as an immunotherapeutic target with promise either alone or in combination with current standard of care therapeutic regimens.


2021 ◽  
Author(s):  
Yini Sun ◽  
Renyu Ding ◽  
Yukun Chang ◽  
Jiuming Li ◽  
Xiaochun Ma

Abstract Background: Sepsis-induced T cell exhaustion that is characterized by upregulated coinhibitory molecules and decreased cytokines release plays a crucial role in the immunosuppression during sepsis. Although PD-1 has shown a promising target to interfere with T cells dysfunction, the role of other coinhibitory receptors in sepsis remains largely elusive. Recently, it has been demonstrated that the coinhibitory molecule TIGIT more reliably identified exhausted T cells than PD-1. The aim of the study was to identify the expression of TIGIT on lymphocytes and the crucial role of TIGIT in modulating T cell function in septic patients. Methods: Twenty-five patients with sepsis and seventeen healthy controls were prospectively enrolled. Peripheral blood was obtained from septic patients within 24 hours after diagnosis of sepsis, as were healthy controls. TIGIT and other coinhibitory/costimulatory molecules expression on lymphocyte subsets was quantitated by flow cytometry. The relationship between TIGIT expression and clinical parameters was simultaneously evaluated. The function T cell from septic patients was assayed via stimulated cytokine secretion. Ex vivo functional assays were also conducted.Results: In the early stage of sepsis, patients exhibited higher levels of TIGIT on T cells relative to healthy donors, especially in the septic shock patients. Elevated frequencies of TIGIT + T cells positively correlated with the severity of organ failure and inflammatory responses in septic patients. TIGIT + T cells expressed higher levels of PD-1 and lower CD226. Further, elevated expression of TIGIT inhibited the release of cytokines including TNF, IFN-γ and IL-2 by CD4 + and CD8 + T cells. Strikingly, ex vivo blockade of TIGIT using anti-TIGIT antibody restored the frequencies of cytokine-producing T cells. Conclusions: These data illustrate TIGIT as a novel marker of exhausted T cells and suggest TIGIT may be a novel immunotherapeutic target during sepsis.


2021 ◽  
Vol 7 (28) ◽  
pp. eabg5859
Author(s):  
Amit Jairaman ◽  
Shivashankar Othy ◽  
Joseph L. Dynes ◽  
Andriy V. Yeromin ◽  
Angel Zavala ◽  
...  

T lymphocytes encounter complex mechanical cues during an immune response. The mechanosensitive ion channel, Piezo1, drives inflammatory responses to bacterial infections, wound healing, and cancer; however, its role in helper T cell function remains unclear. In an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we found that mice with genetic deletion of Piezo1 in T cells showed diminished disease severity. Unexpectedly, Piezo1 was not essential for lymph node homing, interstitial motility, Ca2+ signaling, T cell proliferation, or differentiation into proinflammatory T helper 1 (TH1) and TH17 subsets. However, Piezo1 deletion in T cells resulted in enhanced transforming growth factor–β (TGFβ) signaling and an expanded pool of regulatory T (Treg) cells. Moreover, mice with deletion of Piezo1 specifically in Treg cells showed significant attenuation of EAE. Our results indicate that Piezo1 selectively restrains Treg cells, without influencing activation events or effector T cell functions.


2021 ◽  
Vol 7 (14) ◽  
pp. eabd1866
Author(s):  
Zhenpeng Dai ◽  
Eddy Hsi Chun Wang ◽  
Lynn Petukhova ◽  
Yuqian Chang ◽  
Eunice Yoojin Lee ◽  
...  

The interleukin-7 (IL-7) signaling pathway plays an important role in regulation of T cell function and survival. We detected overexpression of IL-7 in lesional skin from both humans and C3H/HeJ mice with alopecia areata (AA), a T cell–mediated autoimmune disease of the hair follicle. We found that exogenous IL-7 accelerated the onset of AA by augmenting the expansion of alopecic T cells. Conversely, blockade of IL-7 stopped the progression of AA and reversed early AA in C3H/HeJ mice. Mechanistically, we observed that IL-7Rα blockade substantially reduced the total number of most T cell subsets, but relative sparing of regulatory T cells (Tregs). We postulated that short-term anti–IL-7Rα treatment in combination with a low dose of Treg-tropic cytokines might improve therapeutic efficacy in AA. We demonstrated that short-term IL-7Rα blockade in combination with low doses of Treg-tropic cytokines enhanced therapeutic effects in the treatment of AA, and invite further clinical investigation.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2689-2697 ◽  
Author(s):  
Elaine J. Schattner ◽  
John Mascarenhas ◽  
Inna Reyfman ◽  
Mary Koshy ◽  
Caroline Woo ◽  
...  

Chronic lymphocytic leukemia (CLL) is characterized by a clonal expansion of CD5+ B cells in the peripheral blood. Associated immune aberrations include abnormal Th-cell function and pathogenic autoantibodies. Under most circumstances, CLL B cells do not proliferate in culture and express a limited repertoire of surface antigens, including CD19, CD20, CD23, CD27, CD40, and CD70. In this report, we demonstrate that freshly isolated B cells from a subset of CLL cases constitutively express CD40 ligand (CD40L, CD154), a member of the tumor necrosis factor family which is normally expressed by activated CD4+ T cells and mediates T-cell–dependent B-cell proliferation and antibody production. The degree of CD40L expression varied considerably among the CLL cases examined. CD40L was detected in purified CLL B cells by immunofluorescence flow cytometry, by RT-PCR, and by immunoprecipitation. To demonstrate that CD40L in the CLL B cells is functional, we used irradiated CLL cells to stimulate IgG production by target, nonmalignant B cells in coculture. The CLL B cells induced IgG production by normal B cells to a similar degree as did purified T cells in a process which was partially inhibited by monoclonal antibody to CD40L. This is one of the first reports of CD40L expression in a B-cell tumor. The data suggest that CD40L in the tumor cells may be a factor in the generation of pathologic antibodies by normal B cells in some patients with CLL.


2020 ◽  
Vol 21 (23) ◽  
pp. 9286
Author(s):  
Luis D. Munoz ◽  
Michael J. Sweeney ◽  
Julie M. Jameson

The skin is a critical barrier that protects against damage and infection. Within the epidermis and dermis reside γδ T cells that play a variety of key roles in wound healing and tissue homeostasis. Skin-resident γδ T cells require T cell receptor (TCR) ligation, costimulation, and cytokine reception to mediate keratinocyte activity and inflammatory responses at the wound site for proper wound repair. While both epidermal and dermal γδ T cells regulate inflammatory responses in wound healing, the timing and factors produced are distinct. In the absence of growth factors, cytokines, and chemokines produced by γδ T cells, wound repair is negatively impacted. This disruption in γδ T cell function is apparent in metabolic diseases such as obesity and type 2 diabetes. This review provides the current state of knowledge on skin γδ T cell activation, regulation, and function in skin homeostasis and repair in mice and humans. As we uncover more about the complex roles played by γδ T cells in wound healing, novel targets can be discovered for future clinical therapies.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 813
Author(s):  
Norwin Kubick ◽  
Pavel Klimovich ◽  
Patrick Henckell Flournoy ◽  
Irmina Bieńkowska ◽  
Marzena Łazarczyk ◽  
...  

Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins' emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFβ, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates' immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.


2021 ◽  
Vol 9 (8) ◽  
pp. e002628
Author(s):  
Jitao Guo ◽  
Andrew Kent ◽  
Eduardo Davila

Adoptively transferred T cell-based cancer therapies have shown incredible promise in treatment of various cancers. So far therapeutic strategies using T cells have focused on manipulation of the antigen-recognition machinery itself, such as through selective expression of tumor-antigen specific T cell receptors or engineered antigen-recognition chimeric antigen receptors (CARs). While several CARs have been approved for treatment of hematopoietic malignancies, this kind of therapy has been less successful in the treatment of solid tumors, in part due to lack of suitable tumor-specific targets, the immunosuppressive tumor microenvironment, and the inability of adoptively transferred cells to maintain their therapeutic potentials. It is critical for therapeutic T cells to overcome immunosuppressive environmental triggers, mediating balanced antitumor immunity without causing unwanted inflammation or autoimmunity. To address these hurdles, chimeric receptors with distinct signaling properties are being engineered to function as allies of tumor antigen-specific receptors, modulating unique aspects of T cell function without directly binding to antigen themselves. In this review, we focus on the design and function of these chimeric non-antigen receptors, which fall into three broad categories: ‘inhibitory-to-stimulatory’ switch receptors that bind natural ligands, enhanced stimulatory receptors that interact with natural ligands, and synthetic receptor-ligand pairs. Our intent is to offer detailed descriptions that will help readers to understand the structure and function of these receptors, as well as inspire development of additional novel synthetic receptors to improve T cell-based cancer therapy.


Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


Sign in / Sign up

Export Citation Format

Share Document