scholarly journals Neuropilin-1: a checkpoint target with unique implications for cancer immunology and immunotherapy

2020 ◽  
Vol 8 (2) ◽  
pp. e000967 ◽  
Author(s):  
Christopher A Chuckran ◽  
Chang Liu ◽  
Tullia C Bruno ◽  
Creg J Workman ◽  
Dario AA Vignali

Checkpoint blockade immunotherapy established a new paradigm in cancer treatment: for certain patients curative treatment requires immune reinvigoration. Despite this monumental advance, only 20%–30% of patients achieve an objective response to standard of care immunotherapy, necessitating the consideration of alternative targets. Optimal strategies will not only stimulate CD8+ T cells, but concomitantly modulate immunosuppressive cells in the tumor microenvironment (TME), most notably regulatory T cells (Treg cells). In this context, the immunoregulatory receptor Neuropilin-1 (NRP1) is garnering renewed attention as it reinforces intratumoral Treg cell function amidst inflammation in the TME. Loss of NRP1 on Treg cells in mouse models restores antitumor immunity without sacrificing peripheral tolerance. Enrichment of NRP1+ Treg cells is observed in patients across multiple malignancies with cancer, both intratumorally and in peripheral sites. Thus, targeting NRP1 may safely undermine intratumoral Treg cell fitness, permitting enhanced inflammatory responses with existing immunotherapies. Furthermore, NRP1 has been recently found to modulate tumor-specific CD8+ T cell responses. Emerging data suggest that NRP1 restricts CD8+ T cell reinvigoration in response to checkpoint inhibitors, and more importantly, acts as a barrier to the long-term durability of CD8+ T cell-mediated tumor immunosurveillance. These novel and distinct regulatory mechanisms present an exciting therapeutic opportunity. This review will discuss the growing literature on NRP1-mediated immune modulation which provides a strong rationale for categorizing NRP1 as both a key checkpoint in the TME as well as an immunotherapeutic target with promise either alone or in combination with current standard of care therapeutic regimens.

2021 ◽  
Vol 39 (3_suppl) ◽  
pp. TPS264-TPS264
Author(s):  
Daniel V.T. Catenacci ◽  
Minori Koshiji Rosales ◽  
Hyun Cheol Chung ◽  
Harry H. Yoon ◽  
Lin Shen ◽  
...  

TPS264 Background: Trastuzumab (T), a monoclonal antibody (mAb) targeting HER2, is standard of care 1st-line therapy for advanced HER2+ GEJ/GC patients. M, an investigational Fc-engineered anti-HER2 mAb, targets the same HER2 epitope but with higher affinity for both 158V (high binding) and 158F (low binding) alleles of activating Fc receptor CD16A. Data suggest margetuximab coordinately enhances both innate and adaptive immunity, including antigen-specific T-cell responses to HER2. PD-1 and LAG-3 are T-cell checkpoint molecules that suppress T-cell function. Retifanlimab (also known as MGA012 or INCMGA00012) is a humanized, hinge-stabilized, IgG4 Κ anti-PD-1 mAb blocking binding of PD-L1 or PD-L2 to PD-1. Tebotelimab (also known as MGD013) is a humanized Fc-bearing bispecific tetravalent DART® protein that binds to both PD-1 and LAG-3, inhibiting their respective ligand binding. We previously reported that a CTX-free regimen of M+PD-1 blockade was well tolerated in GEJ/GC patients, and induced a 44% objective response rate (ORR) in a double-positive biomarker population. This was 2- to 3-fold greater than in historical controls with checkpoint inhibitors alone. This registration-directed trial assesses efficacy, safety, and tolerability of M+checkpoint inhibition ± CTX in metastatic/locally advanced, treatment-naïve, HER2+ GEJ/GC patients. Methods: This is a 2-cohort, adaptive open-label phase 2/3 study (NCT04082364). The first single arm, CTX-free cohort A, evaluates M+retifanlimab in HER2+ (immunohistochemistry [IHC] 3+) and PD-L1+ (excluding microsatellite instability high) patients. After 40 patients are evaluated for response/safety, additional patients will be enrolled if the threshold for continuation is met. In randomized cohort B, HER2+ (IHC 3+ or 2+/fluorescent in situ hybridization+) patients are enrolled irrespective of PD-L1 status. Part 1 of cohort B randomizes patients to 1 of 4 arms (50 patients each): control arm (T+CTX) or 1 of 3 experimental arms (M+CTX; M+CTX+retifanlimab; M+CTX+tebotelimab). CTX is investigator’s choice XELOX or mFOLFOX-6. Part 2 of cohort B consists of control (T+CTX) vs 1 experimental arm (M+CTX) + either retifanlimab or tebotelimab, depending on results from part 1; with 250 patients each. The primary efficacy endpoint for cohort A (both parts) is ORR per RECIST 1.1; for cohort B part 2 it is overall survival. Clinical trial information: NCT04082364.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. TPS468-TPS468
Author(s):  
Daniel V.T. Catenacci ◽  
Minori Koshiji Rosales ◽  
Jon M. Wigginton ◽  
Hyun Cheol Chung ◽  
Harry H. Yoon ◽  
...  

TPS468 Background: Trastuzumab (T), a monoclonal antibody (mAb) targeting HER2, is standard of care palliative 1st-line therapy for advanced HER2+ GEJ/GC patients (pts). M, an Fc-engineered anti-HER2 mAb, targets the same HER2 epitope but with higher affinity for both 158V (high binding) and 158F (low binding) alleles of activating Fc receptor CD16A. M coordinately enhanced both innate and adaptive immunity, including antigen-specific T-cell responses to HER2. PD-1 and LAG-3 are T-cell checkpoint molecules that suppress T-cell function. MGA012 (INCMGA00012) is a humanized, hinge-stabilized, IgG4 κ anti-PD-1 mAb blocking binding of PD-L1 or PD-L2 to PD-1. MGD013 is a humanized Fc-bearing bispecific tetravalent protein that binds to both PD-1 and LAG-3, inhibiting their respective ligand binding. We previously reported that a CTX-free regimen of M+PD-1 blockade was well tolerated in GEJ/GC pts, and induced a 30% objective response rate (ORR). This was 2- to 3-fold greater than in historical controls with checkpoint inhibitors alone. This registration-directed trial assesses efficacy, safety, and tolerability of M+checkpoint inhibition ± CTX in metastatic/locally advanced, treatment-naïve, HER2+ GEJ/GC pts. Methods: This is a 2-cohort, adaptive open-label phase 2/3 study. The first single arm, CTX-free cohort A evaluates M+MGA012 in HER2+ (immunohistochemistry [IHC] 3+) and PD-L1+ (excluding microsatellite instability high) pts. After 40 pts are evaluated for response/safety, 60 more pts will be enrolled if the threshold for continuation is met. In randomized cohort B, HER2+ (IHC 3+ or 2+/fluorescent in situ hybridization+) pts are enrolled irrespective of PD-L1 status. Part 1 randomizes pts to 1 of 4 arms (50 pts each): control arm (T+CTX) or 1 experimental arm (M+CTX; M+CTX+MGA012; M+CTX+MGD013). CTX is investigator’s choice XELOX or mFOLFOX-6. Part 2 consists of control (T+CTX) vs 1 experimental arm (M+CTX) + either MGA012 or MGD013, depending on results from part 1; with 250 pts each. The primary efficacy endpoint for cohort A (both parts) is ORR per RECIST 1.1; for cohort B part 2 it is overall survival.


2009 ◽  
Vol 296 (3) ◽  
pp. H689-H697 ◽  
Author(s):  
Karen Y. Stokes ◽  
LeShanna Calahan ◽  
Candiss M. Hamric ◽  
Janice M. Russell ◽  
D. Neil Granger

Hypercholesterolemia is associated with phenotypic changes in endothelial cell function that lead to a proinflammatory and prothrombogenic state in different segments of the microvasculature. CD40 ligand (CD40L) and its receptor CD40 are ubiquitously expressed and mediate inflammatory responses and platelet activation. The objective of this study was to determine whether CD40/CD40L, in particular T-cell CD40L, contributes to microvascular dysfunction induced by hypercholesterolemia. Intravital microscopy was used to quantify blood cell adhesion in cremasteric postcapillary venules, endothelium-dependent vasodilation responses in arterioles, and microvascular oxidative stress in wild-type (WT) C57BL/6, CD40-deficient (−/−), CD40L−/−, or severe combined immune deficient (SCID) mice placed on a normal (ND) or high-cholesterol (HC) diet for 2 wk. WT-HC mice exhibited an exaggerated leukocyte and platelet recruitment in venules and impaired vasodilation responses in arterioles compared with ND counterparts. A deficiency of CD40, CD40L, or lymphocytes attenuated these responses to HC. The HC phenotype was rescued in CD40L−/− and SCID mice by a transfer of WT T cells. Bone marrow chimeras revealed roles for both vascular- and blood cell-derived CD40 and CD40L in the HC-induced vascular responses. Hypercholesterolemia induced an oxidative stress in both arterioles and venules of WT mice, which was abrogated by either CD40 or CD40L deficiency. The transfer of WT T cells into CD40L−/− mice restored the oxidative stress. These results implicate CD40/CD40L interactions between circulating cells and the vascular wall in both the arteriolar and venular dysfunction elicited by hypercholesterolemia and identify T-cell-associated CD40L as a key mediator of these responses.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 5529-5529
Author(s):  
Cailin Joyce ◽  
Dhan Chand ◽  
Benjamin Duckless ◽  
Manuel Hidalgo ◽  
Joseph Elan Grossman ◽  
...  

5529 Background: The development and clinical application of immune checkpoint inhibitors has transformed the therapeutic landscape for cancer treatment in recent years. Balstilimab (AGEN2034) is a fully human, monoclonal IgG4 antibody that binds with high affinity to programmed death 1 (PD-1), thus preventing the interaction between this receptor and its ligands programmed death ligand 1 and 2 (PD-L1, PD-L2). Emerging evidence suggests that balstilimab exhibits a differentiated activity profile compared to currently approved anti-PD-1 agents, including pembrolizumab and nivolumab. Methods: Balstilimab as monotherapy was evaluated in a large phase 2 study in patients (pts) with recurrent/metastatic cervical cancer who had relapsed after a platinum-based treatment regimen for advanced disease. Pts were dosed at 3 mg/kg once every 2 weeks for up to 24 months and antitumor activity was assessed using RECIST v1.1. The tumor cell killing activity of balstilimab was evaluated preclinically in a human co-culture system of (1) primary T cells engineered to recognize NY-ESO-1 and (2) NY-ESO-1+ cancer cell lines, including PD-L1 and/or PD-L2-deficient engineered lines. The co-culture system was maintained for ̃ two weeks to drive partial T cell exhaustion; a state where cytotoxicity is compromised but recoverable with PD-1 blockade. Cytotoxicity of these partially exhausted T cells was quantified against PD-L1/L2 double positive, single positive, or double negative cancer cells in the presence or absence of PD-(L)1 antibodies. Results: In the second-line treatment setting for pts with advanced cervical cancer, balstilimab showed a numerically higher objective response rate (ORR) in subjects with PD-L1+, squamous cell carcinoma (SCC) tumors (21%, 95% CI, 12.7-32.6%) than those reported for pembrolizumab. Unlike pembrolizumab, balstilimab showed activity in PD-L1(-) pts, and irrespective of tumor histology (ORR 7.9%, 95% CI, 2.7-20.8%). Despite lower overall PD-L1 positivity compared to SCC (41.7 v 72.9%), an ORR of 12.5% (95% CI, 5.9-24.7%) was observed in the subset of pts with a poorer prognosis, those with cervical adenocarcinoma. Concordant with clinical observations, balstilimab demonstrated superior rescue of antigen-specific T cell cytotoxicity in vitro relative to pembrolizumab, nivolumab, or atezolizumab. Balstilimab also induced cytotoxicity against PD-L1 and/or PD-L2 deficient target cancer cells. Conclusions: Taken together, these data suggest functional differentiation of balstilimab from other PD-1 inhibitors with potentially important implications for extending the therapeutic reach of anti-PD-1 therapy. Investigation of the underlying mechanistic basis for these findings is ongoing. Clinical trial information: NCT03104699.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3020-3020
Author(s):  
Shayela Suvarna ◽  
Emily K.E. McCracken ◽  
Gowthami M. Arepally

Abstract Heparin-Induced Thrombocytopenia (HIT) is a drug-dependent immune disorder caused by autoantibodies to Platelet Factor 4 (PF4) and heparin. The immune basis of HIT is poorly understood. Recent studies describing transient antibody responses and absence of immunologic memory in HIT suggest that PF4/heparin autoantibodies may develop independently of T cell help. To investigate the cellular basis of the HIT immune response, we have developed a murine autoimmune model in which anti-murine PF4/heparin (anti-mP+H) arise de novo. Cohorts of BALB/c mice were immunized daily either intravenously (IV, n=10) or intraperitoneally (IP, n=10) for five days with complexes of murine (m) PF4/heparin (IV, n=5 or IP, n=5), heparin alone (IV, n= 2) or buffer (IV, n=3 or IP, n=5). Mice were screened for anti-mP+H for four weeks after immunization using a murine PF4/heparin ELISA. Peak antibody responses to antigen were seen at 11–15 days in 2/5 mice injected with IV mP+H (Day 11, mouse IV P+H #0 peak A450nm =0.34±0.01; Day15 mouse IV P+H #2 peak A450nm =0.69±0.01), and at days 22–25 in 2/5 mice injected by IP route (Day 22, mouse IP P+H #0 peak A450nm =0.37±0.01; Day 25 mouse IP P+H #2 peak A450nm =0.78±0.02). Anti-mP+H were not detected in mice injected with heparin alone or buffer alone at any time point (peak maximum IV A450nm= 0.1±0.001, Control #2; mouse IP P+H Control #2 A450nm =0.04±0.002). Serologically, murine autoantibodies were similar to anti-human (h) PF4/heparin. Anti-mP+H reactivity was specific for murine antigen (mouse IV P+H #2 A450nm=0.65±0.06), and was reduced with antigen in the presence of excess heparin (A450nm=0.38±0.01). Minimal reactivity was seen with wells coated with hP+H (A450nm=0.09±0.005), albumin (mouse IV P+H #2 A450nm=0.15±0.03), or PBS alone (mouse IV P+H #2 A450nm =0.16±0.01). Similar to human HIT antibodies, anti-mP+H were of IgG1 subclass. To determine if T cells are required for development of anti-mP+H, mice lacking T cell function (BIG:BALB/c-Nu, n=10) were injected IV with mP+H daily for five days. Unlike euthymic mice, nude mice did not manifest any antibody responses to IV injections of mP+H. In summary, we have developed a novel murine autoimmune model of anti-PF4/heparin that recapitulates many salient features of the human immune syndrome. Using this murine model, we demonstrate that T cells are essential for development PF4/heparin autoantibodies. Studies are currently underway to delineate mechanisms of T cell regulation and peripheral tolerance in HIT.


2021 ◽  
Author(s):  
Yini Sun ◽  
Renyu Ding ◽  
Yukun Chang ◽  
Jiuming Li ◽  
Xiaochun Ma

Abstract Background: Sepsis-induced T cell exhaustion that is characterized by upregulated coinhibitory molecules and decreased cytokines release plays a crucial role in the immunosuppression during sepsis. Although PD-1 has shown a promising target to interfere with T cells dysfunction, the role of other coinhibitory receptors in sepsis remains largely elusive. Recently, it has been demonstrated that the coinhibitory molecule TIGIT more reliably identified exhausted T cells than PD-1. The aim of the study was to identify the expression of TIGIT on lymphocytes and the crucial role of TIGIT in modulating T cell function in septic patients. Methods: Twenty-five patients with sepsis and seventeen healthy controls were prospectively enrolled. Peripheral blood was obtained from septic patients within 24 hours after diagnosis of sepsis, as were healthy controls. TIGIT and other coinhibitory/costimulatory molecules expression on lymphocyte subsets was quantitated by flow cytometry. The relationship between TIGIT expression and clinical parameters was simultaneously evaluated. The function T cell from septic patients was assayed via stimulated cytokine secretion. Ex vivo functional assays were also conducted.Results: In the early stage of sepsis, patients exhibited higher levels of TIGIT on T cells relative to healthy donors, especially in the septic shock patients. Elevated frequencies of TIGIT + T cells positively correlated with the severity of organ failure and inflammatory responses in septic patients. TIGIT + T cells expressed higher levels of PD-1 and lower CD226. Further, elevated expression of TIGIT inhibited the release of cytokines including TNF, IFN-γ and IL-2 by CD4 + and CD8 + T cells. Strikingly, ex vivo blockade of TIGIT using anti-TIGIT antibody restored the frequencies of cytokine-producing T cells. Conclusions: These data illustrate TIGIT as a novel marker of exhausted T cells and suggest TIGIT may be a novel immunotherapeutic target during sepsis.


2021 ◽  
Vol 7 (28) ◽  
pp. eabg5859
Author(s):  
Amit Jairaman ◽  
Shivashankar Othy ◽  
Joseph L. Dynes ◽  
Andriy V. Yeromin ◽  
Angel Zavala ◽  
...  

T lymphocytes encounter complex mechanical cues during an immune response. The mechanosensitive ion channel, Piezo1, drives inflammatory responses to bacterial infections, wound healing, and cancer; however, its role in helper T cell function remains unclear. In an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we found that mice with genetic deletion of Piezo1 in T cells showed diminished disease severity. Unexpectedly, Piezo1 was not essential for lymph node homing, interstitial motility, Ca2+ signaling, T cell proliferation, or differentiation into proinflammatory T helper 1 (TH1) and TH17 subsets. However, Piezo1 deletion in T cells resulted in enhanced transforming growth factor–β (TGFβ) signaling and an expanded pool of regulatory T (Treg) cells. Moreover, mice with deletion of Piezo1 specifically in Treg cells showed significant attenuation of EAE. Our results indicate that Piezo1 selectively restrains Treg cells, without influencing activation events or effector T cell functions.


2020 ◽  
Vol 8 (2) ◽  
pp. e000966
Author(s):  
Yeonjoo Choi ◽  
Yaoyao Shi ◽  
Cara L Haymaker ◽  
Aung Naing ◽  
Gennaro Ciliberto ◽  
...  

Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.


Leukemia ◽  
2021 ◽  
Author(s):  
Fangtian Wu ◽  
Natsuko Watanabe ◽  
Maria-Myrsini Tzioni ◽  
Ayse Akarca ◽  
Chunye Zhang ◽  
...  

AbstractThe development of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by chronic inflammatory responses and acquired genetic changes. To investigate its genetic bases, we performed targeted sequencing of 93 genes in 131 MALT lymphomas including 76 from the thyroid. We found frequent deleterious mutations of TET2 (86%), CD274 (53%), TNFRSF14 (53%), and TNFAIP3 (30%) in thyroid MALT lymphoma. CD274 was also frequently deleted, together with mutation seen in 68% of cases. There was a significant association between CD274 mutation/deletion and TNFRSF14 mutation (p = 0.001). CD274 (PD-L1) and TNFRSF14 are ligands for the co-inhibitory receptor PD1 and BTLA on T-helper cells, respectively, their inactivation may free T-cell activities, promoting their help to malignant B-cells. In support of this, both the proportion of activated T-cells (CD4+CD69+/CD4+) within the proximity of malignant B-cells, and the level of transformed blasts were significantly higher in cases with CD274/TNFRSF14 genetic abnormalities than those without these changes. Both CD274 and TNFRSF14 genetic changes were significantly associated with Hashimoto’s thyroiditis (p = 0.01, p = 0.04, respectively), and CD274 mutation/deletion additionally associated with increased erythrocyte sedimentation rate (p = 0.0001). In conclusion, CD274/TNFRSF14 inactivation in thyroid MALT lymphoma B-cells may deregulate their interaction with T-cells, promoting co-stimulations and impairing peripheral tolerance.


2021 ◽  
Vol 7 (14) ◽  
pp. eabd1866
Author(s):  
Zhenpeng Dai ◽  
Eddy Hsi Chun Wang ◽  
Lynn Petukhova ◽  
Yuqian Chang ◽  
Eunice Yoojin Lee ◽  
...  

The interleukin-7 (IL-7) signaling pathway plays an important role in regulation of T cell function and survival. We detected overexpression of IL-7 in lesional skin from both humans and C3H/HeJ mice with alopecia areata (AA), a T cell–mediated autoimmune disease of the hair follicle. We found that exogenous IL-7 accelerated the onset of AA by augmenting the expansion of alopecic T cells. Conversely, blockade of IL-7 stopped the progression of AA and reversed early AA in C3H/HeJ mice. Mechanistically, we observed that IL-7Rα blockade substantially reduced the total number of most T cell subsets, but relative sparing of regulatory T cells (Tregs). We postulated that short-term anti–IL-7Rα treatment in combination with a low dose of Treg-tropic cytokines might improve therapeutic efficacy in AA. We demonstrated that short-term IL-7Rα blockade in combination with low doses of Treg-tropic cytokines enhanced therapeutic effects in the treatment of AA, and invite further clinical investigation.


Sign in / Sign up

Export Citation Format

Share Document