scholarly journals Temporal changes in expression of connexin 43 after load-induced hypertrophy in vitro

2009 ◽  
Vol 296 (3) ◽  
pp. H806-H814 ◽  
Author(s):  
Tepmanas Bupha-Intr ◽  
Kaylan M. Haizlip ◽  
Paul M. L. Janssen

Upon remodeling of the ventricle after a provoking stimulus, such as hypertension, connections between adjacent myocytes may need to be “reformatted” to preserve a synchronization of excitation of the remodeling heart. In the mammalian heart, the protein connexin forms the gap junctions that allow electrical and chemical signaling communication between neighboring cells. We aim to elucidate whether mechanical load, in isolation, potentially changes the expression of connexin 43 (Cx43), the major isoform of the connexin family in the ventricle, and its phosphorylation. Cx43 expression levels and contractile function of multicellular rabbit cardiac preparations were assessed in a newly developed in vitro system that allows for the study of the transition of healthy multicellular rabbit myocardium to hypertrophied myocardium. We found that in mechanically loaded cardiac trabeculae, Cx43 levels remained stable for about 12 h and then rapidly declined. Phosphorylation at Ser368 declined much faster, being almost absent after 2 h of high-load conditions. No-load conditions did not affect Cx43 levels, nor did phosphorylation at Ser368. The downregulation of Cx43 under mechanical load did not correspond with the contractile changes that were observed. Furthermore, blocking paracrine activity of the muscle could only partially prevent the downregulation of Cx43. Additionally, no effect of mechanical loading on the expression of N-cadherin and zonula occludens-1 was observed, indicating a specificity of the connexin response. High mechanical load induced a rapid loss of Cx43 phosphorylation, followed by a decrease in Cx43 protein levels. Paracrine factors are partly responsible for the underlying mechanism of action, whereas no direct correlation to contractile ability was observed.

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Wenjing Liu ◽  
Yujia Cui ◽  
Jianxun Sun ◽  
Linyi Cai ◽  
Jing Xie ◽  
...  

Connexin 43 (Cx43)-mediated gap junctional intercellular communication (GJIC) has been shown to be important in regulating multiple functions of bone cells. Transforming growth factor-β1 (TGF-β1) exhibited controversial effects on the expression of Cx43 in different cell types. To date, the effect of TGF-β1 on the Cx43 expression of osteocytes is still unknown. In the present study, we detected the expression of TGF-β1 in osteocytes and bone tissue, and then used recombinant mouse TGF-β1 to elucidate its effect on gap junctions (GJs) of osteocytes. Our data indicated that TGF-β1 up-regulated both mRNA and protein expression of Cx43 in osteocytes. Together with down-regulation of Cx43 expression after being treated with TGF-β type I receptor inhibitor Repsox, we deduced that TGF-β1 can positively regulate Cx43 expression in osteocytes. Thus we next focussed on the downstream signals of TGF-β and found that TGF-β1-mediated smads, Smad3 and Smad4, to translocate into nucleus. These translocated signal proteins bind to the promoter of Gja1 which was responsible for the changed expression of Cx43. The present study provides evidence that TGF-β1 can enhance GJIC between osteocytes through up-regulating Cx43 expression and the underlying mechanism involved in the activation of Smad-dependent pathway.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Paul Kwangho Kwon ◽  
Kyung-Ha Lee ◽  
Ji-hyung Kim ◽  
Sookil Tae ◽  
Seokjin Ham ◽  
...  

ABSTRACT Circadian gene expression is defined by the gene-specific phase and amplitude of daily oscillations in mRNA and protein levels. D site-binding protein mRNA (Dbp mRNA) shows high-amplitude oscillation; however, the underlying mechanism remains elusive. Here, we demonstrate that heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator that activates Dbp transcription via the poly(C) motif within its proximal promoter. Biochemical analyses identified hnRNP K as a specific protein that directly associates with the poly(C) motif in vitro. Interestingly, we further confirmed the rhythmic binding of endogenous hnRNP K within the Dbp promoter through chromatin immunoprecipitation as well as the cycling expression of hnRNP K. Finally, knockdown of hnRNP K decreased mRNA oscillation in both Dbp and Dbp-dependent clock genes. Taken together, our results show rhythmic protein expression of hnRNP K and provide new insights into its function as a transcriptional amplifier of Dbp.


2015 ◽  
Vol 35 (1) ◽  
pp. 184-190 ◽  
Author(s):  
Weifeng Song ◽  
Qi Li ◽  
Lei Wang ◽  
Liwei Wang

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal primary tumors in humans, with undetermined tumorigenesis. Although previous work by us, and by others, has clearly demonstrated an involvement of miR-21 in the growth of PDAC, the underlying mechanism has not been clarified. Methods: Here we analyzed the regulation of FoxO1 by miR-21 in vitro and in vivo, using luciferase-reporter assay and pancreatic intraductal infusion of antisense of miR-21, respectively. Results: We found that overexpression of miR-21 in PDAC cells decreased FoxO1 protein levels, whereas inhibition of miR-21 increased FoxO1 levels. Further, miR-21 bound to FoxO1 mRNA to prevent its translation through its 3'UTR. Moreover, administration of antisense of miR-21 through an intraductal infusion system significantly decreased miR-21 levels and increased FoxO1 levels in implanted PDAC, resulting in a significant decrease in PDAC growth. Conclusion: Taken together, our data highlight miR-21/FoxO1 axis as a novel therapeutic target for inhibiting the growth of PDAC.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 917-924 ◽  
Author(s):  
Encarnacion Montecino-Rodriguez ◽  
Hyosuk Leathers ◽  
Kenneth Dorshkind

Abstract Gap junctions are intercellular channels, formed by individual structural units known as connexins (Cx), that allow the intercellular exchange of various messenger molecules. The finding that numbers of Cx43-type gap junctions in bone marrow are elevated during establishment and regeneration of the hematopoietic system has led to the hypothesis that expression of Cx43 is critical during the initiation of blood cell formation. To test this hypothesis, lymphoid and myeloid development were examined in mice with a targeted disruption of the gene encoding Cx43. Because Cx43−/− mice die perinatally, initial analyses were performed on Cx43−/−, Cx43+/−, and Cx43+/+ embryos and newborns. The data indicate that lack of Cx43 expression during embryogenesis compromises the terminal stages of primary T and B lymphopoiesis. Cx43−/− embryos and neonates had a reduced frequency of CD4+ and T-cell receptor-expressing thymocytes and surface IgM+cells compared to their Cx43+/+ littermates. Surprisingly, Cx43+/− embryos/neonates also showed defects in B- and T-cell development similar to those observed in Cx43−/− littermates, but their hematopoietic system was normal at 4 weeks of age. However, the regeneration of lymphoid and myeloid cells was severely impaired in the Cx43+/− mice after cytoablative treatment. Taken together, these data indicate that loss of a single Cx43 allele can affect blood cell formation. Finally, the results of reciprocal bone marrow transplants between Cx43+/+ and Cx43+/− mice and examination of hematopoietic progenitors and stromal cells in vitro indicates that the primary effects of Cx43 are mediated through its expression in the hematopoietic microenvironment.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2529
Author(s):  
Anna Rafało-Ulińska ◽  
Ewa Poleszak ◽  
Aleksandra Szopa ◽  
Anna Serefko ◽  
Magdalena Rogowska ◽  
...  

Zinc (Zn) was found to enhance the antidepressant efficacy of imipramine (IMI) in human depression and animal tests/models of depression. However, the underlying mechanism for this effect remains unknown. We measured the effect of intragastric (p.o.) combined administration of IMI (60 mg/kg) and Zn (40 mg Zn/kg) in the forced swim test (FST) in mice. The effect of Zn + IMI on serum, brain, and intestinal Zn concentrations; Zn transporter (ZnT, ZIP) protein levels in the intestine and ZnT in the brain; including BDNF (brain-derived neurotrophic factor) and CREB (cAMP response element-binding protein) protein levels in the brain were evaluated. Finally, the effect of IMI on Zn permeability was measured in vitro in colon epithelial Caco-2 cells. The co-administration of IMI and Zn induced antidepressant-like activity in the FST in mice compared to controls and Zn or IMI given alone. This effect correlated with increased BDNF and the ratio of pCREB/CREB protein levels in the prefrontal cortex (PFC) compared to the control group. Zn + IMI co-treatment increased Zn concentrations in the serum and brain compared to the control group. However, in serum, co-administration of IMI and Zn decreased Zn concentration compared to Zn alone treatment. Also, there was a reduction in the Zn-induced enhancement of ZnT1 protein level in the small intestine. Zn + IMI also induced an increase in the ZnT4 protein level in the PFC compared to the control group and normalized the Zn-induced decrease in the ZnT1 protein level in the hippocampus (Hp). The in vitro studies revealed enhanced Zn permeability (observed as the increased transfer of Zn through the intestinal cell membrane) after IMI treatment. Our data indicate that IMI enhances Zn transfer through the intestinal tract and influences the redistribution of Zn between the blood and brain. These mechanisms might explain the enhanced antidepressant efficacy of combined IMI/Zn treatment observed in the FST in mice.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Hailong Yu ◽  
Xiang Cao ◽  
Wei Li ◽  
Pinyi Liu ◽  
Yuanyuan Zhao ◽  
...  

Abstract Background In the central nervous system (CNS), connexin 43 (Cx43) is mainly expressed in astrocytes and regulates astrocytic network homeostasis. Similar to Cx43 overexpression, abnormal excessive opening of Cx43 hemichannels (Cx43Hcs) on reactive astrocytes aggravates the inflammatory response and cell death in CNS pathologies. However, the role of excessive Cx43Hc opening in intracerebral hemorrhage (ICH) injury is not clear. Methods Hemin stimulation in primary cells and collagenase IV injection in C57BL/6J (B6) mice were used as ICH models in vitro and in vivo. After ICH injury, the Cx43 mimetic peptide Gap19 was used for treatment. Ethidium bromide (EtBr) uptake assays were used to measure the opening of Cx43Hcs. Western blotting and immunofluorescence were used to measure protein expression. qRT-PCR and ELISA were used to determine the levels of cytokines. Coimmunoprecipitation (Co-IP) and the Duolink in situ proximity ligation assay (PLA) were applied to measure the association between proteins. Results In this study, Cx43 expression upregulation and excessive Cx43Hc opening was observed in mice after ICH injury. Delayed treatment with Gap19 significantly alleviated hematoma volume and neurological deficits after ICH injury. In addition, Gap19 decreased inflammatory cytokine levels in the tissue surrounding the hematoma and decreased reactive astrogliosis after ICH injury in vitro and in vivo. Intriguingly, Cx43 transcriptional activity and expression in astrocytes were significantly increased after hemin stimulation in culture. However, Gap19 treatment downregulated astrocytic Cx43 expression through the ubiquitin-proteasome pathway without affecting Cx43 transcription. Additionally, our data showed that Gap19 increased Yes-associated protein (YAP) nuclear translocation. This subsequently upregulated SOCS1 and SOCS3 expression and then inhibited the TLR4-NFκB and JAK2-STAT3 pathways in hemin-stimulated astrocytes. Finally, the YAP inhibitor, verteporfin (VP), reversed the anti-inflammatory effect of Gap19 in vitro and almost completely blocked its protective effects in vivo after ICH injury. Conclusions This study provides new insight into potential treatment strategies for ICH injury involving astroglial Cx43 and Cx43Hcs. Suppression of abnormal astroglial Cx43 expression and Cx43Hc opening by Gap19 has anti-inflammatory and neuroprotective effects after ICH injury.


2019 ◽  
Author(s):  
Xinyu Wang ◽  
Liangshu Feng ◽  
Meiying Xin ◽  
Yulei Hao ◽  
Xu Wang ◽  
...  

Abstract Background : Connexin 43 (Cx43) are the most widely distributed gap junction proteins in the nervous system. Cx43 enables cell-to-cell communication and plays an important role in ion transport, substrate exchange and delivery of information , which have been implicated in cerebral ischemia injury. Our previous work revealed the relationships between Cx43 and glia-mediated neuroinflammation through the release of ATP in oxygen-glucose deprivation (OGD), which means degradation of Cx43 may improve neuroinflammatory damage during OGD injury . However, the roles of Cx43 degradation and neuroinflammation caused by OGD remain unclear. Methods: We used primary cultured astrocytes treated with OGD as an in vitro model of cerebral ischemia injury and we used middle cerebral artery occlusion (MCAO) model as an in vivo model of cerebral ischemia. HeLa cells were used in overexpression experiments. Cx43 protein levels were determined by western blotting. The interaction between Cx43 and related autophagy receptors was determined by co-immunoprecipitation and immunofluorescence. The gene knockdown (KD) of ATG5, OPTN, NDP52, PINK1 and Cx43 was applied by siRNA transfection. Related cytokines were detected by cytometric bead assay. Results: We found that Cx43 protein levels increased after ischemia in gene KD of ATG5, OPTN, NDP52 and PINK1 primary astrocytes. The interaction of Cx43 with OPTN, NDP52 and PINK1 was increased after cerebral ischemia injury in vitro and vivo. While the interaction was weakened after point mutation of Cx43 at Ser368, Tyr265 and Tyr247. Meanwhile, IL-10 upregulated during OGD after KD of ATG5, OPTN, NDP52 and PINK1 in astrocytes , while TNF downregulated during OGD after KD of ATG5, OPTN, NDP52 and PINK1 in astrocytes. Conclusions: Our results suggest that degradation of Cx43 is caused by selective autophagy during ischemia injury and the autophagy degradation of Cx43 plays important roles in neuroinflammation mediated by OGD injury. Treatment targeting Cx43 degradation pathway can improve neuroinflammation responses induced by OGD injury , which provide novel therapeutic strategies and crosstalk between autophagy and neuroinflammation.


2021 ◽  
Author(s):  
Marina Spoerrer ◽  
Delf Kah ◽  
Richard C Gerum ◽  
Barbara Reischl ◽  
Danyil Huraskin ◽  
...  

Desminopathies comprise hereditary myopathies and cardiomyopathies caused by mutations in the intermediate filament protein desmin that lead to severe and often lethal degeneration of striated muscle tissue. Animal and single cell studies hinted that this degeneration process is associated with massive ultrastructural defects correlating with increased susceptibility of the muscle to acute mechanical stress. The underlying mechanism of mechanical susceptibility, and how muscle degeneration develops over time, however, has remained elusive. Here, we investigated the effect of a desmin mutation on the formation, differentiation, and contractile function of in vitro-engineered three-dimensional micro-tissues grown from muscle stem cells (satellite cells) isolated from heterozygous R349P desmin knock-in mice. Micro-tissues grown from desmin-mutated cells exhibited spontaneous unsynchronized contractions, higher contractile forces in response to electrical stimulation, and faster force recovery compared to tissues grown from wild-type cells. Within one week of culture, the majority of R349P desmin-mutated tissues disintegrated, whereas wild-type tissues remained intact over at least three weeks. Moreover, under tetanic stimulation lasting less than five seconds, desmin-mutated tissues partially or completely ruptured, whereas wild-type tissues did not display signs of damage. Our results demonstrate that the progressive degeneration of desmin-mutated micro-tissues is closely linked to extracellular matrix fiber breakage associated with increased contractile forces and unevenly distributed tensile stress. This suggests that the age-related degeneration of skeletal and cardiac muscle in patients suffering from desminopathies may be similarly exacerbated by mechanical damage from high-intensity muscle contractions. We conclude that micro-tissues may provide a valuable tool for studying the organization of myocytes and the pathogenic mechanisms of myopathies.


2020 ◽  
Vol 36 (11) ◽  
pp. 844-851
Author(s):  
Wei Tu ◽  
Weifeng Li ◽  
Xingen Zhu ◽  
Linlin Xu

Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry and can affect memory; however, the underlying mechanism remains unclear. In the present study, mouse HT22 cells, an immortalized hippocampal neuronal cell line, was utilized as an in vitro model. We showed that DEHP dramatically inhibited cell viability and increased lactate dehydrogenase (LDH) release from the cells in a dose-dependent manner, suggesting that DEHP could cause cytotoxicity of mouse HT22 cells. The protein levels of cleaved Caspase-8, cleaved Caspase-3, and Bax markedly increased in the DEHP-treated cells, whereas there was a significant decrease in the Bcl-2 protein level, implying that DEHP could induce apoptosis of mouse HT22 cells. DEHP exposure significantly increased the content of malondialdehyde, whereas it markedly decreased the level of glutathione and the activities of glutathione peroxidase and superoxide dismutase, suggesting that DEHP induced oxidative stress of the cells. Compared with the DEHP-treated group, the inhibition of cell viability and the release of LDH were rescued in the N-acetyl-l-cysteine plus DEHP group. Furthermore, inhibition of oxidative stress could rescue the induction of apoptosis by DEHP. Collectively, our results indicated that DEHP could induce apoptosis of mouse HT22 cells via oxidative stress.


2020 ◽  
Vol 31 (10) ◽  
pp. 2312-2325
Author(s):  
Wei Cao ◽  
Liling Wu ◽  
Xiaodong Zhang ◽  
Jing Zhou ◽  
Jian Wang ◽  
...  

BackgroundHypertension commonly complicates CKD. Vascular smooth muscle cells (VSMCs) of resistance arteries receive signals from the sympathetic nervous system that induce an endothelial cell (EC)–dependent anticontractile response that moderates vasoconstriction. However, the specific role of this pathway in the enhanced vasoconstriction in CKD is unknown.MethodsA mouse model of CKD hypertension generated with 5/6-nephrectomy (5/6Nx) was used to investigate the hypothesis that an impaired anticontractile mechanism enhances sympathetic vasoconstriction. In vivo, ex vivo (isolated mesenteric resistance arteries), and in vitro (VSMC and EC coculture) models demonstrated neurovascular transmission and its contribution to vascular resistance.ResultsBy 4 weeks, 5/6Nx mice (versus sham) had augmented increases in mesenteric vascular resistance and mean arterial pressure with carotid artery occlusion, accompanied by decreased connexin 43 (Cx43) expression at myoendothelial junctions (MEJs), impaired gap junction function, decreased EC-dependent hyperpolarization (EDH), and enhanced contractions. Exposure of VSMCs to NE for 24 hours in a vascular cell coculture decreased MEJ Cx43 expression and MEJ gap junction function. These changes preceded vascular structural changes evident only at week 8. Inhibition of central sympathetic outflow or transfection of Cx43 normalized neurovascular transmission and vasoconstriction in 5/6Nx mice.Conclusions5/6Nx mice have enhanced neurovascular transmission and vasoconstriction from an impaired EDH anticontractile component before vascular structural changes. These neurovascular changes depend on an enhanced sympathetic discharge that impairs the expression of Cx43 in gap junctions at MEJs, thereby interrupting EDH responses that normally moderate vascular tone. Dysregulation of neurovascular transmission may contribute to the development of hypertension in CKD.


Sign in / Sign up

Export Citation Format

Share Document