scholarly journals Harnessing basic and clinic tools to evaluate SGLT2 inhibitor nephrotoxicity

2017 ◽  
Vol 313 (4) ◽  
pp. F951-F954 ◽  
Author(s):  
Danielle L. Saly ◽  
Mark A. Perazella

Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a new class of medications that target the transporter that reabsorbs ~90% of glucose in the S1 segment of the proximal convoluted tubule. As a result, SGLT2 inhibition increases urinary glucose excretion, effectively lowering plasma glucose levels. In addition to reducing hemoglobin A1c levels, these drugs also lower body weight, blood pressure, and uric acid levels in Type 2 diabetes mellitus (T2DM) patients. Importantly, empagliflozin has been observed to slow progression of kidney disease and reduce dialysis requirements in T2DM patients. However, the Food and Drug Administration (FDA) Adverse Events Reporting System (FAERS) has collected over 100 cases of acute kidney injury (AKI) for canagloflozin and dapagliflozin since their approval. Of the 101 patients, 96 required hospitalization, 22 required intensive care unit admission, and 15 underwent hemodialysis. The FDA now requires that AKI be listed as a potential side effect of the SGLT2 inhibitors along with cautious prescription of these drugs with other medications, such as renin-angiotensin-system antagonists, diuretics, and NSAIDs. It is unclear, however, whether this FAERS reported “AKI” actually represents structural kidney injury, as randomized, controlled trials of these drugs do not describe AKI as an adverse event despite coprescription with RAS blockers and diuretics. As a result of this FDA warning, diabetic patients with early-stage CKD may not be prescribed an SGLT2 inhibitor for fear of AKI. Thus, it is imperative to ascertain whether the reported AKI represents true structural kidney injury or a functional decline in glomerular filtration rate. We propose using readily available clinical tools with experimental biomarkers of kidney injury and kidney-on-a-chip technology to resolve this question and provide solid evidence about the AKI risk of these drugs for healthcare providers.

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Kyeong-Seok Kim ◽  
Jin-Sol Lee ◽  
Jae-Hyeon Park ◽  
Eun-Young Lee ◽  
Jong-Seok Moon ◽  
...  

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. After development of DN, patients will progress to end-stage renal disease, which is associated with high morbidity and mortality. Here, we developed early-stage diagnostic biomarkers to detect DN as a strategy for DN intervention. For the DN model, Zucker diabetic fatty rats were used for DN phenotyping. The results revealed that DN rats showed significantly increased blood glucose, blood urea nitrogen (BUN), and serum creatinine levels, accompanied by severe kidney injury, fibrosis and microstructural changes. In addition, DN rats showed significantly increased urinary excretion of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Transcriptome analysis revealed that new DN biomarkers, such as complementary component 4b (C4b), complementary factor D (CFD), C-X-C motif chemokine receptor 6 (CXCR6), and leukemia inhibitory factor (LIF) were identified. Furthermore, they were found in the urine of patients with DN. Since these biomarkers were detected in the urine and kidney of DN rats and urine of diabetic patients, the selected markers could be used as early diagnosis biomarkers for chronic diabetic nephropathy.


2021 ◽  
Vol 22 (9) ◽  
pp. 4374
Author(s):  
Tomoaki Takata ◽  
Hajime Isomoto

Diabetes mellitus is a major cause of chronic kidney disease and end-stage renal disease. However, the management of chronic kidney disease, particularly diabetes, requires vast improvements. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for the treatment of diabetes, have been shown to protect against kidney injury via glycemic control, as well as various other mechanisms, including blood pressure and hemodynamic regulation, protection from lipotoxicity, and uric acid control. As such, regulation of these mechanisms is recommended as an effective multidisciplinary approach for the treatment of diabetic patients with kidney disease. Thus, SGLT2 inhibitors are expected to become key drugs for treating diabetic kidney disease. This review summarizes the recent clinical evidence pertaining to SGLT2 inhibitors as well as the mechanisms underlying their renoprotective effects. Hence, the information contained herein will advance the current understanding regarding the pleiotropic effects of SGLT2 inhibitors, while promoting future research in the field.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
José María Mora-Gutiérrez ◽  
José Antonio Rodríguez ◽  
María A. Fernández-Seara ◽  
Josune Orbe ◽  
Francisco Javier Escalada ◽  
...  

AbstractMatrix metalloproteinases have been implicated in diabetic microvascular complications. However, little is known about the pathophysiological links between MMP-10 and the renin-angiotensin system (RAS) in diabetic kidney disease (DKD). We tested the hypothesis that MMP-10 may be up-regulated in early stage DKD, and could be down-regulated by angiotensin II receptor blockade (telmisartan). Serum MMP-10 and TIMP-1 levels were measured in 268 type 2 diabetic subjects and 111 controls. Furthermore, histological and molecular analyses were performed to evaluate the renal expression of Mmp10 and Timp1 in a murine model of early type 2 DKD (db/db) after telmisartan treatment. MMP-10 (473 ± 274 pg/ml vs. 332 ± 151; p = 0.02) and TIMP-1 (573 ± 296 ng/ml vs. 375 ± 317; p < 0.001) levels were significantly increased in diabetic patients as compared to controls. An early increase in MMP-10 and TIMP-1 was observed and a further progressive elevation was found as DKD progressed to end-stage renal disease. Diabetic mice had 4-fold greater glomerular Mmp10 expression and significant albuminuria compared to wild-type, which was prevented by telmisartan. MMP-10 and TIMP-1 are increased from the early stages of type 2 diabetes. Prevention of MMP-10 upregulation observed in diabetic mice could be another protective mechanism of RAS blockade in DKD.


2019 ◽  
Vol 12 ◽  
pp. 117955141986681 ◽  
Author(s):  
Yuka Kamijo ◽  
Hideto Ishii ◽  
Tomohiko Yamamoto ◽  
Kunihisa Kobayashi ◽  
Hiroyuki Asano ◽  
...  

Introduction: Recently, the sodium-glucose cotransporter2 (SGLT2) inhibitor empagliflozin has been shown to lower cardiovascular risk among diabetic patients. It is intriguing that some SGLT2 inhibitors have been found to increase low-density lipoprotein (LDL) cholesterol levels, while the relevance to high-density lipoprotein (HDL) cholesterol is unknown. Although the inhibitory effect of SGLT2 inhibitors on glucose reabsorption may accelerate compensatory lipid metabolism and subsequently reduce body weight and affect the lipid profile, much remains unclear about this mechanism. Therefore, we conducted this study to investigate in detail how canagliflozin affects lipoprotein fractions including LDL and HDL subclasses. Materials and Methods: This study is a multicenter prospective study. The participants were patients with 22 type 2 diabetes (60.7 ± 11.6 years, 59.1% of men) who had HbA1c ⩾ 7.0% and consented to participate in the study. They were administered 100 mg canagliflozin orally once per day. Biochemistry test and cholesterol levels of 20 lipoprotein fractions (G1-G20) using high performance liquid chromatography methods were examined before and after 12 weeks of treatment period. Results: Significant decreases were observed in the participants’ body weight (69.7 to 67.9 kg, P < .001), systolic blood pressure (129.3 to 119.5 mm Hg, P < .01), and HbA1c (8.5% to 7.4%, P < .001). Cholesterol levels in the 20 lipoprotein fractions increased for very large HDL (G14, G15) and large HDL (G16) ( P < .05). Conclusions: Reduction in body weight, improvement of blood glucose levels, and increases in very large HDL and large HDL subclasses were observed after canagliflozin treatment. These beneficial changes might contribute to subsequent suppression of cardiovascular outcomes.


2020 ◽  
Vol 51 (5) ◽  
pp. 349-356 ◽  
Author(s):  
Katerina P. Marathias ◽  
Vaia A. Lambadiari ◽  
Konstantinos P. Markakis ◽  
Vassilios D. Vlahakos ◽  
Dimitra Bacharaki ◽  
...  

Background: Anaemia is a common finding in diabetes, particularly in those patients with albuminuria or renal dysfunction and is associated with impaired erythropoietin (EPO) secretion. This review focuses on mechanisms involved in the regulation of erythropoiesis in diabetic patients in an effort to elucidate the competing effects of the renin angiotensin system (RAS) blockade and sodium-glucose cotransporter-2 (SGLT2) inhibitors on haemoglobin concentration and hematocrit values. Summary: The RAS shows significant activation in diabetic subjects. Angiotensin II, its active octapeptide, causes renal tubulointerstitial hypoxia, which stimulates hypoxia-inducible factors (HIF) and increases EPO secretion and erythropoiesis. As expected, drugs that inactivate RAS, such as angiotensin converting enzyme inhibitors or angiotensin receptor blockers (ACEi/ARB) are associated with a significant hematocrit-lowering effect and/or anaemia in various clinical conditions, including diabetes. Dual blockade by a combination of ACEi and ARB in diabetic patients achieves a better RAS inhibition, but at the same time a worse drop of haemoglobin concentration. Increased glucose reabsorption by SGLTs in diabetic subjects generates a high-glucose environment in renal tubulointerstitium, which may impair HIF-1, damage renal erythropoietin-producing cells (REPs) and decrease EPO secretion and erythropoiesis. SGLT2 inhibitors, which inhibit glucose reabsorption, may attenuate glucotoxicity in renal tubulointerstitium, allowing REPs to resume their function and increase EPO secretion. Indeed, EPO levels increase within a few weeks after initiation of therapy with all known SGLT2 inhibitors, followed by increased reticulocyte count and a gradual elevation of haemoglobin concentration and hematocrit level, which reach zenith values after 2–3 months. Key Messages: The competing effects of RAS blockade and SGLT2 inhibitors on erythropoiesis may have important clinical implications. The rise of hematocrit values by SGLT2 inhibitors given on top of RAS blockade in recent outcome trials may significantly contribute to the cardiorenal protection attained. The relative contribution of each system to erythropoiesis and outcome remains to be revealed in future studies.


BMJ Open ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. e049592
Author(s):  
Hiroyuki Seki ◽  
Norifumi Kuratani ◽  
Toshiya Shiga ◽  
Yudai Iwasaki ◽  
Kanae Karita ◽  
...  

IntroductionSodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antihyperglycaemic agents that promote urinary glucose excretion in the renal proximal tubule and have cardio-protective and renal-protective properties. However, there are several safety concerns related to increased risks of hypoglycaemic, urinary tract infections and ketoacidosis. Ketoacidosis is a potentially fatal complication that often presents as euglycaemic ketoacidosis during SGLT2 inhibitor treatment. Furthermore, invasive treatment and related surgical stress may increase the risk of ketogenesis. Therefore, this study aims to clarify the incidence of SGLT2 inhibitor-associated postoperative ketoacidosis (SAPKA) among patients who are receiving SGLT2 inhibitors and undergoing surgery under general anaesthesia.Methods and analysisThis multicentre, prospective, observational study will recruit 750 adult Japanese patients with diabetes who are receiving SGLT2 inhibitors and undergoing surgery under general anaesthesia. Urine samples will be collected on postoperative days 0, 1, 2 and 3. Blood gas analysis will be performed when urine ketone positivity is detected. The incidence of postoperative ketoacidosis will be identified based on urine ketone positivity and a blood pH of ≤7.3. The study will also collect data to identify risk factors for SAPKA.Ethics and disseminationThe study protocol has been approved by the ethics committee of Kyorin University (approval number: 785, 26 October 2020) and local ethical approval will be required at each participating centre. Study findings will be submitted to peer-reviewed journals and abstracts will be submitted to relevant national and international meetings.Trial registration numberUMIN000042795


2019 ◽  
Vol 44 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Chang Chu ◽  
Yong-Ping Lu ◽  
Lianghong Yin ◽  
Berthold Hocher

Three randomized control trials (Canagliflozin Cardiovascular Assessment Study, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients [EMPA-REG OUTCOME], and Dapagliflozin Effect on Cardiovascular Events-Thrombolysis in Myocardial Infarction 58 [DECLARE-TIMI 58]) showed that the sodium-glucose co-transporter 2 (SGLT2) inhibitors, originally developed as glucose-lowering drugs, are associated with a lower rate of adverse renal outcomes, such as need for renal replacement therapy, doubling of serum creatinine, and loss of glomerular filtration rate (GFR) compared to those in placebo groups. Besides, canagliflozin and empagliflozin also showed a lower risk of progression to macroalbuminuria. The EMPA-REG OUTCOME trial and DECLARE-TIMI 58 trial also indicated that these SGLT2 inhibitors might have beneficial effects on the prevention of acute kidney injury. The United States Food and Drug Administration (FDA) warned of the risk of acute kidney injury for canagliflozin and dapagliflozin. We compared canagliflozin, empagliflozin, and dapagliflozin with respect to chemical structure and pharmacological properties, to explain the observed differences in preventing acute kidney injury, and put forward the hypotheses of the potential mechanisms of different effects of SGLT2 inhibitors on acute kidney injury. Given the raising clinical use of SGLT2 inhibitors, our review should stimulate further basic science and clinical studies in order to definitively understand the role of SGLT2 inhibitors in acute kidney injury. A weakness of the clinical data obtained so far is the fact that the statements concerning acute kidney injury are just based on safety data – mainly creatine measurements. However, given the mode of action of SGLT2 blockers, initiation of a therapy with a SGLT2 blocker will cause an increase of creatine because of its effects on the tubuloglomerular feedback mechanisms/glomerular hemodynamics like RAAS blocking agents do. To really understand the potential effects of SGLT2 inhibitors, we need preclinical and clinical SGLT2 inhibitor studies focusing on all aspects of acute kidney injury – not just changes in GFR biomarkers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Philipp Tauber ◽  
Frederick Sinha ◽  
Raffaela S. Berger ◽  
Wolfram Gronwald ◽  
Katja Dettmer ◽  
...  

Large-scale clinical outcome studies demonstrated the efficacy of SGLT2 inhibitors in patients with type II diabetes. Besides their therapeutic efficacy in diabetes, significant renoprotection was observed in non-diabetic patients with chronic kidney disease (CKD), suggesting the existence of glucose-independent beneficial effects of SGLT2 inhibitors. However, the relevant mechanisms by which SGLT2 inhibition delays the progression of renal injury are still largely unknown and speculative. Previous studies showed that SGLT2 inhibitors reduce diabetic hyperfiltration, which is likely a key element in renoprotection. In line with this hypothesis, this study aimed to investigate the nephroprotective effects of the SGLT2 inhibitor empagliflozin (EMPA) in different mouse models with non-diabetic hyperfiltration and progressing CKD to identify the underlying diabetes-independent cellular mechanisms. Non-diabetic hyperfiltration was induced by unilateral nephrectomy (UNx). Since UNx alone does not result in renal damage, renal disease models with varying degrees of glomerular damage and albuminuria were generated by combining UNx with high NaCl diets ± deoxycorticosterone acetate (DOCA) in different mouse strains with and without genetic predisposition for glomerular injury. Renal parameters (GFR, albuminuria, urine volume) were monitored for 4–6 weeks. Application of EMPA via the drinking water resulted in sufficient EMPA plasma concentration and caused glucosuria, diuresis and in some models renal hypertrophy. EMPA had no effect on GFR in untreated wildtype animals, but significantly reduced hyperfiltration after UNx by 36%. In contrast, EMPA did not reduce UNx induced hyperfiltration in any of our kidney disease models, regardless of their degree of glomerular damage caused by DOCA/salt treatment. Consistent with the lack of reduction in glomerular hyperfiltration, EMPA-treated animals developed albuminuria and renal fibrosis to a similar extent as H2O control animals. Taken together, the data clearly indicate that blockade of SGLT2 has the potential to reduce non-diabetic hyperfiltration in otherwise untreated mice. However, no effects on hyperfiltration or progression of renal injury were observed in hypervolemic kidney disease models, suggesting that high salt intake and extracellular volume might attenuate the protective effects of SGLT2 blockers.


Diseases ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 14
Author(s):  
Yoshifumi Saisho

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of oral hypoglycemic agents which increase urinary glucose excretion by suppressing glucose reabsorption at the proximal tubule in the kidney. SGLT2 inhibitors lower glycated hemoglobin (HbA1c) by 0.6–0.8% (6–8 mmol/mol) without increasing the risk of hypoglycemia and induce weight loss and improve various metabolic parameters including blood pressure, lipid profile and hyperuricemia. Recent cardiovascular (CV) outcome trials have shown the improvement of CV and renal outcomes by treatment with the SGLT2 inhibitors, empagliflozin, canagliflozin, and dapagliflozin. The mechanisms by which SGLT2 inhibitors improve CV outcome appear not to be glucose-lowering or anti-atherosclerotic effects, but rather hemodynamic effects through osmotic diuresis and natriuresis. Generally, SGLT2 inhibitors are well-tolerated, but their adverse effects include genitourinary tract infection and dehydration. Euglycemic diabetic ketoacidosis is a rare but severe adverse event for which patients under SGLT2 inhibitor treatment should be carefully monitored. The possibility of an increase in risk of lower-extremity amputation and bone fracture has also been reported with canagliflozin. Clinical trials and real-world data have suggested that SGLT2 inhibitors improve CV and renal outcomes and mortality in patients with type 2 diabetes (T2DM), especially in those with prior CV events, heart failure, or chronic kidney disease. Results of recent trials including individuals without diabetes may change the positioning of this drug as ″a drug for cardiorenal protection″. This review summarizes the potential of SGLT2 inhibitors and discusses their role in the treatment of T2DM.


2019 ◽  
Vol 20 (3) ◽  
pp. 629 ◽  
Author(s):  
Tuba M. Ansary ◽  
Daisuke Nakano ◽  
Akira Nishiyama

The renin-angiotensin system (RAS) plays an important role in regulating body fluids and blood pressure. However, inappropriate activation of the RAS contributes to the pathogenesis of cardiovascular and renal diseases. Recently, sodium glucose cotransporter 2 (SGLT2) inhibitors have been used as anti-diabetic agents. SGLT2 inhibitors induce glycosuria and improve hyperglycemia by inhibiting urinary reabsorption of glucose. However, in the early stages of treatment, these inhibitors frequently cause polyuria and natriuresis, which potentially activate the RAS. Nevertheless, the effects of SGLT2 inhibitors on RAS activity are not straightforward. Available data indicate that treatment with SGLT2 inhibitors transiently activates the systemic RAS in type 2 diabetic patients, but not the intrarenal RAS. In this review article, we summarize current evidence of the diuretic effects of SGLT2 inhibitors and their influence on RAS activity.


Sign in / Sign up

Export Citation Format

Share Document