scholarly journals Nitro-oleic acid protects against adriamycin-induced nephropathy in mice

2013 ◽  
Vol 305 (11) ◽  
pp. F1533-F1541 ◽  
Author(s):  
Shanshan Liu ◽  
Zhanjun Jia ◽  
Li Zhou ◽  
Ying Liu ◽  
Hong Ling ◽  
...  

Adriamycin (ADR) administration in susceptible rodents such as the BALB/c mouse strain produces injury to the glomerulus mimicking human focal glomerular sclerosis. The goal of the present study was to use this model to investigate antiproteinuric action of nitro-oleic acid (OA-NO2), a nitric oxide-derived endogenous lipid product, which has exhibited multiple attractive signaling properties particularly in the kidney. BALB/c mice were pretreated for 2 days with OA-NO2 at 5 mg·kg−1·day−1 via an osmotic minipump, followed by a single injection of vehicle or adriamycin (10 mg/kg) via the tail vein. Albuminuria and renal function were analyzed at 1 wk post-ADR treatment. ADR mice developed prominent albuminuria, hypoalbuminemia, hyperlipidemia, and severe ascites. In contrast, the symptoms of nephrotic syndrome were greatly improved by OA-NO2 treatment. In parallel, plasma creatinine and plasma urea nitrogen were elevated in the ADR group, and the severity was less in the ADR+OA-NO2 group. OA-NO2 attenuates ADR-induced glomerulosclerosis, podocyte loss, and tubulointerstitial fibrosis. Indices of oxidative stress, including plasma and urinary thiobarbituric acid-reactive substances and renal expression of NAD(P)H oxidase p47phox and gp91phox, and inflammation, including renal expression of TNF-α, IL-1β, and MCP-1 in response to ADR, were all similarly suppressed. Together, these findings suggest that OA-NO2 exerts renoprotective action against ADR nephropathy likely via its anti-inflammatory and antioxidant properties.

Author(s):  
Abeer F. Mostafa ◽  
Mahmoud M. Elalfy ◽  
Ahmed Shata ◽  
Mona G. Elhadidy

AbstractObjectivesUlcerative colitis (UC) is a non-specific intestinal inflammatory disease. Several studies demonstrated that inflammation and oxidative stress play significant role in the pathogenesis of this disease. This study aimed to determine the protective effect and possible mechanism by which stevia affects the course of experimentally induced colitis.MethodsMale rats were received stevia 20, 40, 80 mg/kg/day before induction of colitis by intra-rectal administration of 2 mL of 4% acetic acid, AA. Macroscopic and histopathological examination of the colon were done. Colonic content of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), myeloperoxidase (MPO) and thiobarbituric acid reactive substances (TBARS) activities and serum levels of interleukin (IL)1- β and tumor necrosis factor (TNF)-α were assessed. Real time-PCR (RT-PCR) was done to determine the expression of NF-κB, Nrf2 and PPARγ genes. Spontaneous contraction and effects of increasing concentrations of acetylcholine and stevia have been studied on the isolated colonic segments.ResultsStevia ameliorated colitis not only histopathologically but also it decreased the level of TNF-α, IL-1β, TBARS, MPO and the expression of NF-κB which were significantly increased in the AA group. The concentration of GSH, SOD, CAT and expression of Nrf2 and PPARγ were significantly increased with stevia. Moreover, stevia showed a relaxant effect on the colonic contractility which was increased in AA group. These all effects of stevia were more prominent with its highest dose.ConclusionOur results explored that, stevia acts protectively against UC by its anti-inflammatory and antioxidant properties which mediated by up-regulation of Nrf2 and PPARγ with downregulation of NF-κB. We suggest that stevia has the potential for treatment of chronic inflammatory diseases, such as UC.


2010 ◽  
Vol 298 (3) ◽  
pp. F754-F762 ◽  
Author(s):  
Haiping Wang ◽  
Haiying Liu ◽  
Zhunjun Jia ◽  
Curtis Olsen ◽  
Sheldon Litwin ◽  
...  

Nitroalkene derivatives of nitro-oleic acid (OA-NO2 ) are endogenous lipid products with potent anti-inflammatory properties in vitro. The present study was undertaken to evaluate the in vivo anti-inflammatory effect of OA-NO2 in mice given LPS. Two days before LPS administration, C57BL/6J mice were chronically infused with vehicle (LPS vehicle) or OA-NO2 (LPS OA-NO2) at 200 μg·kg−1·day−1 via osmotic minipumps; LPS was administered via a single intraperitoneal (ip) injection (10 mg/kg in saline). A third group received an ip injection of saline without LPS or OA-NO2 and served as controls. At 18 h of LPS administration, LPS vehicle mice displayed multiorgan dysfunction as evidenced by elevated plasma urea and creatinine (kidney), aspartate aminotransferase (AST) and alanine aminotransferase (ALT; liver), and lactate dehydrogenase (LDH) and reduced ejection fraction (heart). In contrast, the severity of multiorgan dysfunction was less in LPS OA-NO2 animals. The levels of circulating TNF-α and renal TNF-α mRNA expression, together with renal mRNA expression of monocyte chemoattractant protein-1, ICAM-1, and VCAM-1, and with renal mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase 2, and renal cGMP and PGE2 contents, were greater in LPS vehicle vs. control mice, but were attenuated in LPS OA-NO2 animals. Similar patterns of changes in the expression of inflammatory mediators were observed in the liver. Together, pretreatment with OA-NO2 ameliorated the inflammatory response and multiorgan injury in endotoxin-induced endotoxemia in mice.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1247
Author(s):  
Sarah Belperain ◽  
Zi Yae Kang ◽  
Andrew Dunphy ◽  
Brandon Priebe ◽  
Norman H. L. Chiu ◽  
...  

Cardiovascular disease (CVD) has become an increasingly important topic in the field of medical research due to the steadily increasing rates of mortality caused by this disease. With recent advancements in nanotechnology, a push for new, novel treatments for CVD utilizing these new materials has begun. Carbon Nanodots (CNDs), are a new form of nanoparticles that have been coveted due to the green synthesis method, biocompatibility, fluorescent capabilities and potential anti-antioxidant properties. With much research pouring into CNDs being used as bioimaging and drug delivery tools, few studies have been completed on their anti-inflammatory potential, especially in the cardiovascular system. CVD begins initially by endothelial cell inflammation. The cause of this inflammation can come from many sources; one being tumor necrosis factor (TNF-α), which can not only trigger inflammation but prolong its existence by causing a storm of pro-inflammatory cytokines. This study investigated the ability of CNDs to attenuate TNF-α induced inflammation in human microvascular endothelial cells (HMEC-1). Results show that CNDs at non-cytotoxic concentrations reduce the expression of pro-inflammatory genes, mainly Interleukin-8 (IL-8), and interleukin 1 beta (IL-1β). The uptake of CNDs by HMEC-1s was examined. Results from the studies involving channel blockers and endocytosis disruptors suggest that uptake takes place by endocytosis. These findings provide insights on the interaction CNDs and endothelial cells undergoing TNF-α induced cellular inflammation.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


1993 ◽  
Vol 66 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Tsukasa Nakamura ◽  
Isao Ebihara ◽  
Mitsumine Fukui ◽  
Shiori Osada ◽  
Isao Nagaoka ◽  
...  

2010 ◽  
Vol 3 (4) ◽  
pp. 254-261 ◽  
Author(s):  
Mohamed M. Sayed-Ahmed ◽  
Abdulaziz M. Aleisa ◽  
Salim S. Al-Rejaie ◽  
Abdulaziz A. Al-Yahya ◽  
Othman A. Al-Shabanah ◽  
...  

Hepatocellular carcinoma accounts for about 80–90% of all liver cancer and is the fourth most common cause of cancer mortality. Although there are many strategies for the treatment of liver cancer, chemoprevention seems to be the best strategy for lowering the incidence of this disease. Therefore, this study has been initiated to investigate whether thymoquinone (TQ),Nigella sativaderived-compound with strong antioxidant properties, supplementation could prevent initiation of hepatocarcinogenesis-induced by diethylnitrosamine (DENA), a potent initiator and hepatocarcinogen, in rats. Male Wistar albino rats were divided into four groups. Rats of Group 1 received a single intraperitoneal (I.P.) injection of normal saline. Animals in Group 2 were given TQ (4 mg/kg/day) in drinking water for 7 consecutive days. Rats of Group 3 were injected with a single dose of DENA (200 mg/kg, I.P.). Animals in Group 4 were received TQ and DENA. DENA significantly increased alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/nitrite (NOx) and decreased reduced glutathione (GSH), glutathione peroxidase (GSHPx), glutathione-s-transferase (GST) and catalase (CAT) activity in liver tissues. Moreover, DENA decreased gene expression of GSHPx, GST and CAT and caused severe histopathological lesions in liver tissue. Interestingly, TQ supplementation completely reversed the biochemical and histopathological changes induced by DENA to the control values. In conclusion, data from this study suggest that: (1) decreased mRNA expression of GSHPx, CAT and GST during DENA-induced initiation of hepatic carcinogenesis, (2) TQ supplementation prevents the development of DENA-induced initiation of liver cancer by decreasing oxidative stress and preserving both the activity and mRNA expression of antioxidant enzymes.


2020 ◽  
Author(s):  
Chuan-jiang Liu ◽  
Qiang Fu ◽  
Wenjing Zhou ◽  
Xu Zhang ◽  
Rui Chen ◽  
...  

Abstract Background: Methylprednisolone (MP) is a synthetic corticosteroid with potent anti-inflammatory and antioxidant properties used as therapy for a variety of diseases. The underlying mechanism of MP to reduce acute pancreatitis still needs to be elucidated.Methods: Twenty-four male C57BL/6 mice (6-8 weeks) were used to establish SAP mouse model by administering an intraperitoneal injection of Cae and LPS. Amylase expression levels of serum and PLF were measured with an amylase assay kit. The concentrations of IL-1β and TNF-α in the serum and PLF were detected by ELISA. The level of pancreatic and lung tissue damage and inflammation was assessed by H&E staining and immunofluorescence staining. Western blot and qPCR were used to detect the expression levels of NLRP3, IL-1β and TNF-αin vivo and in vitro.Results: In this study, we found MP, used in the early phase of SAP, decreased the levels of IL-1β and TNF-α in serum and peritoneal lavage fluids (PLF), reduced the level of serum amylase and the expression of MPO in lung tissue, attenuated the pathological injury of the pancreas and lungs in a dose-dependent manner. The expression of NLRP3 and IL-1β in pancreas and lungs was down-regulated significantly depending on the MP concentration. In vitro, MP reduced the levels of IL-1β and TNF-α by down-regulating the expression of NLRP3, IL-1β and p-NF-κB in isolated peritoneal macrophages. Conclusion: MP can attenuate the injury of pancreas and lungs, and the inflammatory response in SAP mice by down-regulating the activation of NF-κB and the NLRP3 inflammasome.


Author(s):  
Fiorella Di Nicuolo ◽  
Roberta Castellani ◽  
Carlo Ticconi ◽  
Giovanni Scambia ◽  
Alfredo Pontecorvi ◽  
...  

: α-lipoic acid (ALA), also known as thioctic acid, is a biological thiol present in all types of prokaryotic and eukaryotic cells. It has been shown that ALA or its reduced form, DHLA, have several positive effects on human health acting as biological antioxidant, metal chelator and as a detoxifying agent. It is able to reduce oxidation of several antioxidant agents like glutathione, vitamins C and E, and to modulate insulin and NF-kB signaling pathways. ALA’s pharmacological effects are not only related to its antioxidant properties but it shows an anti-inflammatory action. In particular, ALA is able to reduce inflammasome activity, the pro-inflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18 and IL-17, interferon (INF)-γ as well as the production of Vascular and Intercellular cell adhesion protein (VCAM-1 and ICAM-1). In recent papers, ALA has been indicated as a possible therapeutic approach to several endocrine or inflammatory disorders affecting female reproduction. Aim of the current review was to assess whether ALA has an evidence-based beneficial role on gynecological and obstetrical diseases such as polycystic ovary syndrome (PCOS), endometriosis, and miscarriage.


Sign in / Sign up

Export Citation Format

Share Document