scholarly journals Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation

2020 ◽  
Vol 128 (1) ◽  
pp. 87-99 ◽  
Author(s):  
Kaleen M. Lavin ◽  
Ryan K. Perkins ◽  
Bozena Jemiolo ◽  
Ulrika Raue ◽  
Scott W. Trappe ◽  
...  

Age-associated chronic basal inflammation compromises muscle mass and adaptability, but exercise training may exert an anti-inflammatory effect. This investigation assessed basal and exercise-induced inflammation in three cohorts of men: young exercisers [YE; n = 10 men; 25 ± 1 yr; maximal oxygen consumption (V̇o2max), 53 ± 3 mL·kg−1·min−1; quadriceps area, 78 ± 3 cm2; means ± SE], old healthy nonexercisers (OH; n = 10; 75 ± 1 yr; V̇o2max, 22 ± 1 mL·kg−1·min−1; quadriceps area, 56 ± 3 cm2), and lifelong exercisers with an aerobic training history of 53 ± 1 yr (LLE; n = 21; 74 ± 1 yr; V̇o2max, 34 ± 1 mL·kg−1·min−1; quadriceps area, 67 ± 2 cm2). Resting serum IL-6, TNF-α, C-reactive protein, and IGF-1 levels were measured. Vastus lateralis muscle biopsies were obtained at rest (basal) and 4 h after an acute exercise challenge (3 × 10 repetitions, 70% 1-repetition maximum) to assess gene expression of cytokines [IL-6, TNF-α, IL-1β, IL-10, IL-4, interleukin-1 receptor antagonist (IL-1Ra), and transforming growth factor-β (TGF-β)], chemokines [IL-8 and monocyte chemoattractant protein-1 (MCP-1)], cyclooxygenase enzymes [cyclooxygenase-1 and -2 (COX-1 and COX-2, respectively), prostaglandin E2 synthases [microsomal prostaglandin E synthase 1 (mPGES-1) and cytosolic prostaglandin E2 synthase (cPGES)] and receptors [prostaglandin E2 receptor EP3 and EP4 subtypes (EP3 and EP4, respectively), and macrophage markers [cluster of differentiation 16b (CD16b) and CD163], as well as basal macrophage abundance (CD68+ cells). Aging led to higher ( P ≤ 0.05) circulating IL-6 and skeletal muscle COX-1, mPGES-1, and CD163 expression. However, LLE had significantly lower serum IL-6 levels ( P ≤ 0.05 vs. OH) and a predominantly anti-inflammatory muscle profile [higher IL-10 ( P ≤ 0.05 vs. YE), TNF-α, TGF-β, and EP4 levels ( P ≤ 0.05 vs. OH)]. In OH only, acute exercise increased expression of proinflammatory factors TNF-α, TGF-β, and IL-8 ( P ≤ 0.05). LLE had postexercise gene expression similar to YE, except lower IL-10 ( P ≤ 0.10), mPGES-1, and EP3 expression ( P ≤ 0.05). Thus, although aging led to a proinflammatory profile within blood and muscle, lifelong exercise partially prevented this and generally preserved the acute inflammatory response to exercise seen in young exercising men. Lifelong exercise may positively impact muscle health throughout aging by promoting anti-inflammation in skeletal muscle. NEW & NOTEWORTHY This study assessed a unique population of lifelong aerobic exercising men and demonstrated that their activity status exerts an anti-inflammatory effect in skeletal muscle and circulation. Furthermore, we provide evidence that the inflammatory response to acute exercise is dysregulated by aging but preserved with lifelong exercise, which might improve skeletal muscle resilience to unaccustomed loading and adaptability into late life.

2017 ◽  
Vol 313 (6) ◽  
pp. E737-E747 ◽  
Author(s):  
Bradley S. Gordon ◽  
Jennifer L. Steiner ◽  
Michael L. Rossetti ◽  
Shuxi Qiao ◽  
Leif W. Ellisen ◽  
...  

The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle.


2020 ◽  
Vol 129 (6) ◽  
pp. 1493-1504
Author(s):  
Kaleen M. Lavin ◽  
Ryan K. Perkins ◽  
Bozena Jemiolo ◽  
Ulrika Raue ◽  
Scott W. Trappe ◽  
...  

We previously reported a positive effect of lifelong exercise on skeletal muscle inflammation in aging men. This parallel investigation in women revealed that lifelong exercise did not protect against age-related increases in circulating or muscle inflammation and that preparedness to handle loading stress was not preserved by lifelong exercise. Further investigation is necessary to understand why lifelong aerobic exercise may not confer the same anti-inflammatory benefits in women as it does in men.


2020 ◽  
Vol 16 ◽  
Author(s):  
Niloofar Ghorbani ◽  
Maryam Sahebari ◽  
Mahmoud Mahmoudi ◽  
Maryam Rastin ◽  
Shahrzad Zamani ◽  
...  

Objective: Rheumatoid arthritis (RA) is the most prevalent autoimmune arthritis. Berberine is an alkaloid isolated from Berberis vulgaris and its anti-inflammatory effect has been identified. Method: Twenty newly diagnosed RA patients and 20 healthy controls participated. Peripheral mononuclear cells were prepared and stimulated with bacterial lipopolysachharide (LPS,1 µg/ml), exposed to different concentrations of berberine (10 and 50µM) and dexamethasone (10-7 M) as a reference. Toxicity of compounds was evaluated by WST-1 assay. Expression of TNF-α and IL-1β were determined by quantitative real-time PCR. Protein level of secreted TNF-α and IL1β were measured by using ELISA. Result: Berberine did not have any toxic effect on cells, whereas Lipopolysachharide (LPS) stimulation caused a noticeable rise in TNF-α and IL-1β production. Berberine markedly downregulated the expression of both TNF-α and IL1β and inhibits TNF-α and IL-1β secretion from LPS-stimulated PBMCs. Discussion: This study provided molecular basis for anti-inflammatory effect of berberine on human mononuclear cells through the suppression of TNF-a and IL-1secretion. Our findings highlighted the significant inhibitory effect of berberine on proinflammatory responses of mononuclear cells from rheumatoid arthritis individuals, which may be responsible for antiinflammatory property of Barberry. We observed that berberine at high concentration exhibited anti-inflammatory effect in PBMCs of both healthy and patient groups by suppression of TNF-a and IL-1cytokines at both mRNA and protein levels. Conclusions: Berberine may inhibit the gene expression and production of pro-inflammatory cytokines by mononuclear cells in rheumatoid arthritis and healthy individuals without affecting cells viability. Future studies with larger sample size is needed to prove the idea.


2017 ◽  
Vol 42 (7) ◽  
pp. 757-764 ◽  
Author(s):  
Rômulo Pillon Barcelos ◽  
Guilherme Bresciani ◽  
Maria José Cuevas ◽  
Susana Martínez-Flórez ◽  
Félix Alexandre Antunes Soares ◽  
...  

Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.


2002 ◽  
Vol 92 (3) ◽  
pp. 1176-1182 ◽  
Author(s):  
Timothy P. Gavin ◽  
Peter D. Wagner

Moderate ethanol consumption demonstrates a protective effect against cardiovascular disease and improves insulin sensitivity, possibly through angiogenesis. We investigated whether 1) ethanol would increase skeletal muscle growth factor gene expression and 2) the effects of ethanol on skeletal muscle growth factor gene expression were independent of exercise-induced growth factor gene expression. Female Wistar rats were used. Four groups (saline + rest; saline + exercise; 17 mmol/kg ethanol + rest; and 17 mmol/kg ethanol + exercise) were used to measure the growth factor response to acute exercise and ethanol administration. Vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), basic fibroblast growth factor (bFGF), Flt-1, and Flk-1 mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Ethanol increased VEGF, TGF-β1, bFGF, and Flt-1 mRNA at rest and after acute exercise. Ethanol increased resting Flk-1 mRNA. Ethanol increased bFGF mRNA independently of exercise. These findings suggest that 1) ethanol can increase skeletal muscle angiogenic growth factor gene expression and 2) the mechanisms responsible for the ethanol-induced increases in VEGF, TGFβ1, and Flt-1 mRNA appear to be different from those responsible for exercise-induced regulation. Therefore, these results provide evidence in adult rat tissue that the protective cardiovascular effects of moderate ethanol consumption may result in part through the increase of angiogenic growth factors.


2019 ◽  
Vol 127 (1) ◽  
pp. 143-156 ◽  
Author(s):  
Scott E. Fuller ◽  
Tai-Yu Huang ◽  
Jacob Simon ◽  
Heidi M. Batdorf ◽  
Nabil M. Essajee ◽  
...  

Adaptations in hepatic and skeletal muscle substrate metabolism following acute and chronic (6 wk; 5 days/wk; 1 h/day) low-intensity treadmill exercise were tested in healthy male C57BL/6J mice. Low-intensity exercise maximizes lipid utilization; therefore, we hypothesized pathways involved in lipid metabolism would be most robustly affected. Acute exercise nearly depleted liver glycogen immediately postexercise (0 h), whereas hepatic triglyceride (TAG) stores increased in the early stages after exercise (0–3 h). Also, hepatic peroxisome proliferator-activated receptor-γ coactivator-1α ( PGC-1α) gene expression and fat oxidation (mitochondrial and peroxisomal) increased immediately postexercise (0 h), whereas carbohydrate and amino acid oxidation in liver peaked 24–48 h later. Alternatively, skeletal muscle exhibited a less robust response to acute exercise as stored substrates (glycogen and TAG) remained unchanged, induction of PGC-1α gene expression was delayed (up at 3 h), and mitochondrial substrate oxidation pathways (carbohydrate, amino acid, and lipid) were largely unaltered. Peroxisomal lipid oxidation exhibited the most dynamic changes in skeletal muscle substrate metabolism after acute exercise; however, this response was also delayed (peaked 3–24 h postexercise), and expression of peroxisomal genes remained unaffected. Interestingly, 6 wk of training at a similar intensity limited weight gain, increased muscle glycogen, and reduced TAG accrual in liver and muscle; however, substrate oxidation pathways remained unaltered in both tissues. Collectively, these results suggest changes in substrate metabolism induced by an acute low-intensity exercise bout in healthy mice are more rapid and robust in liver than in skeletal muscle; however, training at a similar intensity for 6 wk is insufficient to induce remodeling of substrate metabolism pathways in either tissue. NEW & NOTEWORTHY Effects of low-intensity exercise on substrate metabolism pathways were tested in liver and skeletal muscle of healthy mice. This is the first study to describe exercise-induced adaptations in peroxisomal lipid metabolism and also reports comprehensive adaptations in mitochondrial substrate metabolism pathways (carbohydrate, lipid, and amino acid). Acute low-intensity exercise induced shifts in mitochondrial and peroxisomal metabolism in both tissues, but training at this intensity did not induce adaptive remodeling of metabolic pathways in healthy mice.


2019 ◽  
Vol 316 (1) ◽  
pp. L197-L205 ◽  
Author(s):  
Yanfei Bin ◽  
Ying Xiao ◽  
Dongmei Huang ◽  
Zhiying Ma ◽  
Yi Liang ◽  
...  

Inflammation is associated with skeletal muscle dysfunction and atrophy in patients with chronic obstructive pulmonary disease (COPD). Theophylline has an anti-inflammatory role in COPD. However, the effects of theophylline on inflammation in skeletal muscle in COPD have rarely been reported. The aims of this study were to explore whether theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema and to investigate the molecular mechanism underlying this effect. In mice, cigarette smoke (CS) exposure for 28 wk resulted in atrophy of the gastrocnemius muscle. Histone deacetylase 2 (HDAC2) and nuclear factor-κBp65 (NF-κBp65) mRNA and protein levels were significantly decreased and increased, respectively, in gastrocnemius muscle. This effect was revered by aminophylline. The exposure of murine skeletal muscle C2C12 cells to CS extract (CSE) significantly increased IL-8 and TNF-α levels as well as NF-κBp65 mRNA and protein levels and NF-κBp65 activity. This effect was reversed by theophylline. HDAC2 knockdown enhanced the activity of NF-κBp65 and increased IL-8 and TNF-α levels in C2C12 cells. CSE significantly increased the interaction of HDAC2 with NF-κBp65 in C2C12 cells. These data suggest that theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema by upregulating HDAC2 expression and decreasing NF-κBp65 activation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Siyi Jiang ◽  
Qiong Wei ◽  
Xiaochuan Ye ◽  
Dan Luo ◽  
Xiaoyan Zhang ◽  
...  

Background. Traditional Chinese medicine Smilax is the rhizome of liliaceous plant Smilax china L., which is used to treat pelvic inflammatory disease and anxieties. Purpose. To investigate the mechanism of anti-inflammatory activity of the extract from Smilax china L. (ES). Methods. The components of ES were identified by UPLC-QTOF-MS/MS. The anti-inflammatory activities were evaluated in xylene-induced ear oedema and egg white-induced plantar swelling test. Cell viability was examined by CCK-8 assay. The inflammatory mediators, proinflammatory cytokines, and MAPK and NF-κB signals in LPS-stimulated THP-1 cells were determined using ELISA, real-time PCR, and Western blot, respectively. Results. 20 compounds of ES were confirmed by comparing with the reference substance. ES displayed more prominent anti-inflammatory activity than the positive control “Jin Gang Teng” capsule in the in vivo acute inflammatory model. ES suppressed the expression of PGE2 and 6-Keot-PGF1α, and the ratio of IC50 (COX-1)/IC50 (COX-2) of ES was 3.15, which indicated that ES could selectively inhibit COX-2. ES dose-dependently (12.5, 25, and 50 mg/L) decreased the production and mRNA levels of proinflammatory cytokines IL-1β, IL-6, and TNF-α. Furthermore, ES significantly decreased LPS-induced phosphorylation of p38, JNK, ERK1/2, and p65, inhibiting the expression of IKKα and the degradation of IκBα. Conclusion. The results suggested that ES could selectively inhibit the activity of COX-2, and the anti-inflammatory effect of ES was associated with the inhibition of IL-1β, IL-6, and TNF-α via negative regulation of MAPK and NF-κB signaling pathways in LPS-induced THP-1 cells.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Sign in / Sign up

Export Citation Format

Share Document