scholarly journals Theophylline inhibits cigarette smoke-induced inflammation in skeletal muscle by upregulating HDAC2 expression and decreasing NF-κB activation

2019 ◽  
Vol 316 (1) ◽  
pp. L197-L205 ◽  
Author(s):  
Yanfei Bin ◽  
Ying Xiao ◽  
Dongmei Huang ◽  
Zhiying Ma ◽  
Yi Liang ◽  
...  

Inflammation is associated with skeletal muscle dysfunction and atrophy in patients with chronic obstructive pulmonary disease (COPD). Theophylline has an anti-inflammatory role in COPD. However, the effects of theophylline on inflammation in skeletal muscle in COPD have rarely been reported. The aims of this study were to explore whether theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema and to investigate the molecular mechanism underlying this effect. In mice, cigarette smoke (CS) exposure for 28 wk resulted in atrophy of the gastrocnemius muscle. Histone deacetylase 2 (HDAC2) and nuclear factor-κBp65 (NF-κBp65) mRNA and protein levels were significantly decreased and increased, respectively, in gastrocnemius muscle. This effect was revered by aminophylline. The exposure of murine skeletal muscle C2C12 cells to CS extract (CSE) significantly increased IL-8 and TNF-α levels as well as NF-κBp65 mRNA and protein levels and NF-κBp65 activity. This effect was reversed by theophylline. HDAC2 knockdown enhanced the activity of NF-κBp65 and increased IL-8 and TNF-α levels in C2C12 cells. CSE significantly increased the interaction of HDAC2 with NF-κBp65 in C2C12 cells. These data suggest that theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema by upregulating HDAC2 expression and decreasing NF-κBp65 activation.

2020 ◽  
Vol 128 (1) ◽  
pp. 87-99 ◽  
Author(s):  
Kaleen M. Lavin ◽  
Ryan K. Perkins ◽  
Bozena Jemiolo ◽  
Ulrika Raue ◽  
Scott W. Trappe ◽  
...  

Age-associated chronic basal inflammation compromises muscle mass and adaptability, but exercise training may exert an anti-inflammatory effect. This investigation assessed basal and exercise-induced inflammation in three cohorts of men: young exercisers [YE; n = 10 men; 25 ± 1 yr; maximal oxygen consumption (V̇o2max), 53 ± 3 mL·kg−1·min−1; quadriceps area, 78 ± 3 cm2; means ± SE], old healthy nonexercisers (OH; n = 10; 75 ± 1 yr; V̇o2max, 22 ± 1 mL·kg−1·min−1; quadriceps area, 56 ± 3 cm2), and lifelong exercisers with an aerobic training history of 53 ± 1 yr (LLE; n = 21; 74 ± 1 yr; V̇o2max, 34 ± 1 mL·kg−1·min−1; quadriceps area, 67 ± 2 cm2). Resting serum IL-6, TNF-α, C-reactive protein, and IGF-1 levels were measured. Vastus lateralis muscle biopsies were obtained at rest (basal) and 4 h after an acute exercise challenge (3 × 10 repetitions, 70% 1-repetition maximum) to assess gene expression of cytokines [IL-6, TNF-α, IL-1β, IL-10, IL-4, interleukin-1 receptor antagonist (IL-1Ra), and transforming growth factor-β (TGF-β)], chemokines [IL-8 and monocyte chemoattractant protein-1 (MCP-1)], cyclooxygenase enzymes [cyclooxygenase-1 and -2 (COX-1 and COX-2, respectively), prostaglandin E2 synthases [microsomal prostaglandin E synthase 1 (mPGES-1) and cytosolic prostaglandin E2 synthase (cPGES)] and receptors [prostaglandin E2 receptor EP3 and EP4 subtypes (EP3 and EP4, respectively), and macrophage markers [cluster of differentiation 16b (CD16b) and CD163], as well as basal macrophage abundance (CD68+ cells). Aging led to higher ( P ≤ 0.05) circulating IL-6 and skeletal muscle COX-1, mPGES-1, and CD163 expression. However, LLE had significantly lower serum IL-6 levels ( P ≤ 0.05 vs. OH) and a predominantly anti-inflammatory muscle profile [higher IL-10 ( P ≤ 0.05 vs. YE), TNF-α, TGF-β, and EP4 levels ( P ≤ 0.05 vs. OH)]. In OH only, acute exercise increased expression of proinflammatory factors TNF-α, TGF-β, and IL-8 ( P ≤ 0.05). LLE had postexercise gene expression similar to YE, except lower IL-10 ( P ≤ 0.10), mPGES-1, and EP3 expression ( P ≤ 0.05). Thus, although aging led to a proinflammatory profile within blood and muscle, lifelong exercise partially prevented this and generally preserved the acute inflammatory response to exercise seen in young exercising men. Lifelong exercise may positively impact muscle health throughout aging by promoting anti-inflammation in skeletal muscle. NEW & NOTEWORTHY This study assessed a unique population of lifelong aerobic exercising men and demonstrated that their activity status exerts an anti-inflammatory effect in skeletal muscle and circulation. Furthermore, we provide evidence that the inflammatory response to acute exercise is dysregulated by aging but preserved with lifelong exercise, which might improve skeletal muscle resilience to unaccustomed loading and adaptability into late life.


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3053
Author(s):  
Anh Thu Ha ◽  
Mi-Yeon Kim ◽  
Jae Youl Cho

Barringtonia augusta methanol extract (Ba-ME) is a folk medicine found in the wetlands of Thailand that acts through an anti-inflammatory mechanism that is not understood fully. Here, we examine how the methanol extract of Barringtonia augusta (B. augusta) can suppress the activator protein 1 (AP-1) signaling pathway and study the activities of Ba-ME in the lipopolysaccharide (LPS)-treated RAW264.7 macrophage cell line and an LPS-induced peritonitis mouse model. Non-toxic concentrations of Ba-ME downregulated the mRNA expression of cytokines, such as cyclooxygenase and chemokine ligand 12, in LPS-stimulated RAW264.7 cells. Transfection experiments with the AP-1-Luc construct, HEK293T cells, and luciferase assays were used to assess whether Ba-ME suppressed the AP-1 functional activation. A Western blot assay confirmed that C-Jun N-terminal kinase is a direct pharmacological target of Ba-ME action. The anti-inflammatory effect of Ba-ME, which functions by β-activated kinase 1 (TAK1) inhibition, was confirmed by using an overexpression strategy and a cellular thermal shift assay. In vivo experiments in a mouse model of LPS-induced peritonitis showed the anti-inflammatory effect of Ba-ME on LPS-stimulated macrophages and acute inflammatory mouse models. We conclude that Ba-ME is a promising anti-inflammatory drug targeting TAK1 in the AP-1 pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rosangela Montanaro ◽  
Alessio D’Addona ◽  
Andrea Izzo ◽  
Carlo Ruosi ◽  
Vincenzo Brancaleone

AbstractClodronate is a bisphosphonate agent commonly used as anti-osteoporotic drug. Throughout its use, additional anti-inflammatory and analgesic properties have been reported, although the benefits described in the literature could not solely relate to their inhibition of bone resorption. Thus, the purpose of our in vitro study is to investigate whether there are underlying mechanisms explaining the anti-inflammatory effect of clodronate and possibly involving hydrogen sulphide (H2S). Immortalised fibroblast-like synoviocyte cells (K4IM) were cultured and treated with clodronate in presence of TNF-α. Clodronate significantly modulated iNOS expression elicited by TNF-α. Inflammatory markers induced by TNF-α, including IL-1, IL-6, MCP-1 and RANTES, were also suppressed following administration of clodronate. Furthermore, the reduction in enzymatic biosynthesis of CSE-derived H2S, together with the reduction in CSE expression associated with TNF-α treatment, was reverted by clodronate, thus rescuing endogenous H2S pathway activity. Clodronate displays antinflammatory properties through the modulation of H2S pathway and cytokines levels, thus assuring the control of the inflammatory state. Although further investigation is needed to stress out how clodronate exerts its control on H2S pathway, here we showed for the first the involvement of H2S in the additive beneficial effects observed following clodronate therapy.


2008 ◽  
Vol 294 (6) ◽  
pp. L1043-L1048 ◽  
Author(s):  
Wolfram Burkhardt ◽  
Petra Koehne ◽  
Heide Wissel ◽  
Susanne Graf ◽  
Hans Proquitté ◽  
...  

Perfluorocarbons (PFC) reduce the production of various inflammatory cytokines, including TNF-α. The anti-inflammatory effect is not entirely understood. If anti-inflammatory properties are caused by a mechanical barrier, PFC in the alveoli should have no effect on the inflammatory response to intravenous LPS administration. To test that hypothesis, rats ( n = 31) were administered LPS intravenously and were either spontaneously breathing (Spont), conventionally ventilated (CMV), or receiving partial liquid ventilation (PLV). Serum concentration of TNF-α was measured. The pulmonary expressions of TNF-α and TNF-α receptor 1 protein and of TNF-α and ICAM-1 mRNA were determined. LPS caused a significant ( P < 0.001) increase in serum TNF-α. Serum TNF-α concentration was similar in LPS/Spont (525 ± 180 pg/ml) and LPS/CMV (504 ± 154 pg/ml) but was significantly ( P < 0.001) lower in animals of the LPS/PLV group (274 ± 101 pg/ml). Immunohistochemical data on TNF-α protein expression showed a LPS-induced increase in TNF-α and TNF-α receptor 1 expression that was diminished by partial liquid ventilation. PCR measurements revealed a lower expression of TNF-α and ICAM-1 mRNA in LPS/PLV than in LPS/CMV or LPS/Spont animals. Semiquantitative histological evaluation revealed only minor alveolar inflammation with no significant differences between the groups. Low serum TNF-α concentration in PFC-treated animals is most likely explained by a decreased production of TNF-α in the lung.


2019 ◽  
Vol 11 (16) ◽  
pp. 2081-2094 ◽  
Author(s):  
Tingting Guo ◽  
Zhenzhong Su ◽  
Qi Wang ◽  
Wei Hou ◽  
Junyao Li ◽  
...  

Aim: Thus far, the anti-inflammatory effect of vanillin in acute lung injury (ALI) has not been studied. This study aimed to investigate the effect of vanillin in lipopolysaccharide (LPS)-induced ALI. Results & methodology: Our study detected the anti-inflammatory effects of vanillin by ELISA and western blot, respectively. Pretreatment of mice with vanillin significantly attenuated LPS-stimulated lung histopathological changes, myeloperoxidase activity and expression levels of proinflammatory cytokines by inhibiting the phosphorylation activities of ERK1/2, p38, AKT and NF-κB p65. In addition, vanillin inhibited LPS-induced TNF-α and IL-6 expression in RAW264.7 cells via ERK1/2, p38 and NF-κB signaling. Conclusion: Vanillin can inhibit macrophage activation and lung inflammation, which suggests new insights for clinical treatment of ALI.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251348
Author(s):  
Tiankui Shuai ◽  
Chuchu Zhang ◽  
Meng Zhang ◽  
Yalei Wang ◽  
Huaiyu Xiong ◽  
...  

Background A synergism has been reported between theophylline and corticosteroids, wherein theophylline increases and restores the anti-inflammatory effect of inhaled corticosteroids (ICS) by enhancing histone deacetylase-2 (HDAC) activity. Several studies have explored the efficacy of low-dose theophylline plus ICS therapy on chronic obstructive pulmonary disease (COPD) but the results are discrepant. Method We conducted searches in electronic database such as PubMed, Web Of Science, Cochrane Library, and Embase to find out original studies. Stata/SE 15.0 was used to perform all data analysis. Result A total of 47,556 participants from 7 studies were included in our analysis and the sample size of each study varied from 24 to 10,816. Theophylline as an add-on therapy to ICS was not associated with the reduction of COPD exacerbations (HR: 1.08, 95% CI: 0.97 to 1.19, I2 = 95.2%). Instead, the theophylline group demonstrated a higher hospitalization rate (HR: 1.12, 95% CI: 1.10 to 1.15, I2 = 20.4%) and mortality (HR: 1.19, 95% CI: 1.14 to 1.25, I2 = 0%). Further, the anti-inflammatory effect of low-dose theophylline as an adjunct to ICS on COPD was controversial. Besides, the theophylline group showed significant improvement in lung function compared with the non-theophylline group. Conclusion Based on current evidence, low-dose theophylline as add-on therapy to ICS did not reduce the exacerbation rate. Instead, the hospitalization rate and mortality increased with theophylline. Thus, we do not recommend adding low-dose theophylline to ICS therapy in COPD patients. Trial registration PROSPERO Registration CRD42021224952.


Sign in / Sign up

Export Citation Format

Share Document