Modulation of Mechanosensory Responses by Motoneurons That Regulate Skin Surface Topology in the Leech

2004 ◽  
Vol 91 (5) ◽  
pp. 2366-2375 ◽  
Author(s):  
Mariano Julián Rodriguez ◽  
Irene Raquel Iscla ◽  
Lidia Szczupak

Central regulation of somatosensory signals has been extensively studied, but little is known about their regulation in the periphery. Given the widespread exposure of the skin sensory terminals to the environment, it is of interest to explore how somatosensory sensitivity is affected by changes in properties of the skin. In the leech, the annuli that subdivide the skin can be erected under the control of the annulus erector (AE) motoneurons. To analyze whether this surface change influences mechanosensory sensitivity, we studied the responses of low threshold mechanosensory T cells to mechanical stimulation of the skin as AE motoneurons were activated. In segments of the body wall connected to the corresponding ganglion and submerged in an aqueous environment, T cells responded to localized bubbling on the skin and to water flow parallel to its surface. Excitation of AE motoneurons diminished these responses in a way that depended on the motoneuron firing frequency. Video recordings established that the range of AE firing frequencies that produced effective annulus erection coincided with that influencing T cell responses. In isolated ganglia, AE firing had no effect on T cell excitability, suggesting that annulus erection diminished T cell responsiveness to mechanical input. Counteracting this effect, mechanosensory inputs inhibited AE motoneurons. However, because depolarization of AE cells caused a decrease in their input resistance, the more active the motoneuron, the less sensitive it became to inhibitory signals. Thus when brought to fire, AE motoneurons would stay “committed” to a high activity level, and this would limit sensory responsiveness to incoming mechanical signals.

2018 ◽  
Vol 27 (9) ◽  
pp. 1352-1367 ◽  
Author(s):  
Fu Yuan Yang ◽  
Rui Chen ◽  
Xiaohu Zhang ◽  
Biao Huang ◽  
Lai Ling Tsang ◽  
...  

Mesenchymal stem cell (MSC)-based cell therapy has been demonstrated as a promising strategy in the treatment of inflammatory bowel disease (IBD), which is considered an immune disease. While the exact mechanisms underlying the therapeutic effect of MSCs are still unclear, MSCs display anti-inflammatory and immunomodulatory effects by interacting with various immunoregulatory cells. Our previous studies have shown that MSCs can be preconditioned and deconditioned with enhanced cell survival, differentiation and migration. In this study, we evaluated the effect of preconditioning on the immunoregulatory function of human umbilical cord-derived MSCs (hUCMSCs) and their therapeutic effect on treating IBD. Our results show that intraperitoneal administration of deconditioned hUCMSCs (De-hUCMSCs) reduces the disease activity index (DAI), histological colitis score and destruction of the epithelial barrier, and increases the body weight recovery more intensively than that of un-manipulated hUCMSCs. In addition, De-hUCMSCs but not hUCMSCs elicit anti-apoptotic effects via induction of the ERK pathway during the early stage of IBD development. In vitro co-culture studies indicate that De-hUCMSCs suppress T-cell proliferation and activation more markedly than hUCMSCs. Moreover, De-hUCMSCs block the induction of inflammatory cytokines such as tumor necrosis factor (TNF)α and interleukin (IL)-2, while promoting the secretion of the anti-inflammatory cytokine IL-10 in T-cells. Mechanically, we find that prostaglandin E2 (PGE2) secretion is significantly increased in De-hUCMSCs, the suppression of which dramatically abrogates the inhibitory effect of De-hUCMSCs on T-cell activation, implying that the crosstalk between De-hUCMSCs and T-cells is mediated by PGE2. Together, we have demonstrated that preconditioning enhances the immunosuppressive and therapeutic effects of hUCMSCs on treating IBD via increased secretion of PGE2.


Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3238-3248 ◽  
Author(s):  
Enrico Lugli ◽  
Carolyn K. Goldman ◽  
Liyanage P. Perera ◽  
Jeremy Smedley ◽  
Rhonda Pung ◽  
...  

Abstract Interleukin-15 (IL-15) is a cytokine with potential therapeutic application in individuals with cancer or immunodeficiency to promote natural killer (NK)– and T-cell activation and proliferation or in vaccination protocols to generate long-lived memory T cells. Here we report that 10-50 μg/kg IL-15 administered intravenously daily for 12 days to rhesus macaques has both short- and long-lasting effects on T-cell homeostasis. Peripheral blood lymphopenia preceded a dramatic expansion of NK cells and memory CD8 T cells in the circulation, particularly a 4-fold expansion of central memory CD8 T cells and a 6-fold expansion of effector memory CD8 T cells. This expansion is a consequence of their activation in multiple tissues. A concomitant inverted CD4/CD8 T-cell ratio was observed throughout the body at day 13, a result of preferential CD8 expansion. Expanded T- and NK-cell populations declined in the blood soon after IL-15 was stopped, suggesting migration to extralymphoid sites. By day 48, homeostasis appears restored throughout the body, with the exception of the maintenance of an inverted CD4/CD8 ratio in lymph nodes. Thus, IL-15 generates a dramatic expansion of short-lived memory CD8 T cells and NK cells in immunocompetent macaques and has long-term effects on the balance of CD4+ and CD8+ T cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 593-593
Author(s):  
Andreas Beilhack ◽  
Stephan Schulz ◽  
Jeanette Baker ◽  
Georg F. Beilhack ◽  
Courtney B. Wieland ◽  
...  

Abstract To study the complex pathophysiology of aGvHD in allogeneic hematopoietic cell transplantation (HCT) we transplanted transgenic luciferase expressing T cell populations into lethally irradiated HCT recipients (murine MHC major mismatch model, H-2q into H-2d). Tracking of light emitting donor T cells in living animals and detailed studies by multi color immunofluorescence microscopy (IFM) and FACS revealed the tight links of spatial and temporal evolution in this complex immune process. Donor derived T cells migrate to T cell areas in lymphoid tissues within a period of 12 hours. In the initial periods donor CD4+ T cells appear first with CD8+ T cell infiltration at later time points. Donor T cells start proliferating in lymphatic tissues on day 2 after transfer, as observed by BrdU stainings. Although alloreactive T cells are similarly activated in all lymphoid organs, they only up-regulate gut homing molecules after more than 5 cell divisions (CFSE proliferation analysis by FACS) in certain lymphoid organs (Peyer’s patches, mesenteric LN and spleen). Abruptly on day 4 after HCT, T cells migrate into intestinal sites. These findings strongly suggested, that specific priming sites are required for alloreactive T cells to induce a distinct type of tissue tropism in GvHD. In contrast to previous reports peformed without host conditioning, depletion of certain lymphoid organs (e.g. Peyer’s patches) before HCT or antibody blocking experiments did not control aGVHD. BLI showed, that anti-L-selectin or anti-MAdCAM-1 antibody treatment alone or in combination was effective in blocking donor T cell migration to lymph nodes and Peyer’s patches, while redirecting these cells to liver and spleen. Subsequently cells proliferated predominantly in the spleen until day 3 after HCT. Surprisingly we observed a full picture of gut infiltration on day 4 and skin involvement on day 5–6, similar in dynamics and strength to the aGvHD isotype control group. These findings demonstrated, that other lymphoid organs can functionally compensate for inducing gut and skin homing of alloreactive T cells. Of importance, we demonstrated that T cells that lacked homing molecules for secondary lymphoid organs had alloreactive properties in vitro, yet did not cause aGVHD in vivo. In summary, the activation of alloreactive T cells in specific sites throughout the body is complex and involves the acquisition of homing molecule expression. Transplantation of T cells with defined homing properties therefore, appears to be a promising alternative in conferring protective immunity early after HCT without the risk of aGvHD.


2019 ◽  
Vol 37 (8_suppl) ◽  
pp. 30-30
Author(s):  
Patrick C. Gedeon ◽  
Carter M. Suryadevara ◽  
Bryan D. Choi ◽  
John H. Sampson

30 Background: Activated T cells are known to traffic throughout the body including past the blood-brain barrier where they perform routine immune surveillance. Whether activated T cells can be used to enhance the efficacy and delivery of intravenously-administered, immunotherapeutic antibodies has yet to be explored. Methods: To examine efficacy, T cell migration and antibody delivery in vivo, the invasive murine glioma, CT-2A-EGFRvIII, was implanted orthotopically in human CD3 transgenic mice. Cohorts of mice were given vehicle or 1x107 non-specifically activated, syngeneic T cells intravenously. Beginning the subsequent day, groups were treated with daily intravenous infusions of human-CD3-binding, tumor-lysis-inducing bispecific antibody (hEGFRvIII-CD3 bi-scFv) or control bispecific antibody. To block T cell extravasation, cohorts received natalizumab or isotype control via intraperitoneal injection every other day beginning on the day of adoptive cell transfer. T cell migration was assessed using whole body bioluminescence imaging of activated T cells transduced to express firefly luciferase. Bispecific antibody biodistribution was assessed using PET-CT imaging of iodine-124 labeled antibody. Results: Following intravenous administration, ex vivo activated T cells tracked to invasive, syngeneic, orthotopic glioma, reaching maximal levels on average four days following adoptive transfer. Administration of ex vivo activated T cells enhanced bispecific antibody efficacy causing a statistically significant increase in survival (p = 0.007) with 80% long-term survivors. Treatment with the T cell extravasation blocking molecule natalizumab abrogated the increase in efficacy to levels observed in cohorts that did not receive adoptive transfer of activated T cells (p = 0.922). Pre-administration with ex vivo activated T cells produced a statistically significant increase in tumor penetrance of radiolabeled bispecific antibody (p = 0.023). Conclusions: Adoptive transfer of non-specifically activated T cells enhances the efficacy and tumor penetrance of intravenously-administered CD3-binding bispecific antibody.


2001 ◽  
Vol 75 (23) ◽  
pp. 11483-11495 ◽  
Author(s):  
Zdenek Hel ◽  
Janos Nacsa ◽  
Brian Kelsall ◽  
Wen-Po Tsai ◽  
Norman Letvin ◽  
...  

ABSTRACT The identification of several simian immunodeficiency virus mac251 (SIVmac251) cytotoxic T-lymphocyte epitopes recognized by CD8+ T cells of infected rhesus macaques carrying the Mamu-A*01 molecule and the use of peptide-major histocompatibility complex tetrameric complexes enable the study of the frequency, breadth, functionality, and distribution of virus-specific CD8+ T cells in the body. To begin to address these issues, we have performed a pilot study to measure the virus-specific CD8+ and CD4+ T-cell response in the blood, lymph nodes, spleen, and gastrointestinal lymphoid tissues of eight Mamu-A*01-positive macaques, six of those infected with SIVmac251 and two infected with the pathogenic simian-human immunodeficiency virus KU2. We focused on the analysis of the response to peptide p11C, C-M (Gag 181), since it was predominant in most tissues of all macaques. Five macaques restricted viral replication effectively, whereas the remaining three failed to control viremia and experienced a progressive loss of CD4+ T cells. The frequency of the Gag 181 (p11C, C→M) immunodominant response varied among different tissues of the same animal and in the same tissues from different animals. We found that the functionality of this virus-specific CD8+ T-cell population could not be assumed based on the ability to specifically bind to the Gag 181 tetramer, particularly in the mucosal tissues of some of the macaques infected by SIVmac251 that were progressing to disease. Overall, the functionality of CD8+ tetramer-binding T cells in tissues assessed by either measurement of cytolytic activity or the ability of these cells to produce gamma interferon or tumor necrosis factor alpha was low and was even lower in the mucosal tissue than in blood or spleen of some SIVmac251-infected animals that failed to control viremia. The data obtained in this pilot study lead to the hypothesis that disease progression may be associated with loss of virus-specific CD8+ T-cell function.


2017 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Mousa Mohammadnia-Afrouzi ◽  
Mehdi Shahbazi ◽  
Sedigheh Baleghi Damavandi ◽  
Ghasem Faghanzadeh Ganji ◽  
Soheil Ebrahimpour

Based on diverse activities and production of several cytokines, T lymphocytes and T helper cells are divided into Th1, Th2, Th17 and regulatory T-cell (T regs) subsets based on diverse activities and production of several cytokines. Infectious agents can escape from host by modulation of immune responses as effector T-cells and Tregs. Thus, regulatory T-cells play a critical role in suppression of immune responses to infectious agents such as viruses, bacteria, parasites and fungi and as well as preserving immune homeostasis. However, regulatory T-cell responses can advantageous for the body by minimizing the tissue-damaging effects. The following subsets of regulatory T-cells have been recognized: natural regulatory Tcells, Th3, Tr1, CD8+ Treg, natural killer like Treg (NKTreg) cells. Among various markers of Treg cells, Forkhead family transcription factor (FOXP3) as an intracellular protein is used for discrimination between activated T reg cells and activated T-cells. FOXP3 has a central role in production, thymocyte differentiation and function of regulatory Tcells. Several mechanisms have been indicated in regulation of T reg cells. As, the suppression of T-cells via regulatory T-cells is either mediated by Cell-cell contact and Immunosuppressive cytokines (TGF-Beta, IL-10) mediated.


2020 ◽  
Vol 8 (2) ◽  
pp. e000966
Author(s):  
Yeonjoo Choi ◽  
Yaoyao Shi ◽  
Cara L Haymaker ◽  
Aung Naing ◽  
Gennaro Ciliberto ◽  
...  

Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.


2006 ◽  
Vol 87 (1) ◽  
pp. 61-72 ◽  
Author(s):  
Wen Li ◽  
Jie Li ◽  
D. Lorne J. Tyrrell ◽  
Babita Agrawal

The majority of hepatitis C virus (HCV)-infected individuals become chronically infected, which can result in liver cirrhosis and hepatocellular carcinoma. Patients with chronic HCV are unable to prime and maintain vigorous T-cell responses, which are required to rid the body of the viral infection. Dendritic cells (DCs) are the professional antigen-presenting cells that probably play a dominant role in priming and maintaining vigorous T-cell responses in HCV infection. Furthermore, inefficient DC function may play an important role in HCV chronicity. In order to determine the effect of HCV NS3 and core proteins on phenotype and function of human DCs, recombinant adenoviral vectors containing NS3 or core genes were used to infect human DCs. HCV NS3- or core-protein expression in DCs was confirmed by Western blotting and immunofluorescence staining. The DCs expressing HCV NS3 or core proteins expressed several inflammatory cytokine mRNAs, had a normal phenotype and effectively stimulated allogeneic T cells, as well as T cells specific for another foreign antigen (tetanus toxoid). These findings are important for rational design of cellular-vaccine approaches for the immunotherapy of chronic HCV.


2021 ◽  
Vol 22 (15) ◽  
pp. 8234
Author(s):  
Luuk de Haan ◽  
Johnny Suijker ◽  
Ruthger van Roey ◽  
Nina Berges ◽  
Elissaveta Petrova ◽  
...  

The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 364 ◽  
Author(s):  
Muaz Rushdi ◽  
Kaitao Li ◽  
Zhou Yuan ◽  
Stefano Travaglino ◽  
Arash Grakoui ◽  
...  

Cells in the body are actively engaging with their environments that include both biochemical and biophysical aspects. The process by which cells convert mechanical stimuli from their environment to intracellular biochemical signals is known as mechanotransduction. Exemplifying the reliance on mechanotransduction for their development, differentiation and function are T cells, which are central to adaptive immune responses. T cell mechanoimmunology is an emerging field that studies how T cells sense, respond and adapt to the mechanical cues that they encounter throughout their life cycle. Here we review different stages of the T cell’s life cycle where existing studies have shown important effects of mechanical force or matrix stiffness on a T cell as sensed through its surface molecules, including modulating receptor–ligand interactions, inducing protein conformational changes, triggering signal transduction, amplifying antigen discrimination and ensuring directed targeted cell killing. We suggest that including mechanical considerations in the immunological studies of T cells would inform a more holistic understanding of their development, differentiation and function.


Sign in / Sign up

Export Citation Format

Share Document