A Plasma Controlled X-Ray Tube

1979 ◽  
Vol 23 ◽  
pp. 241-247
Author(s):  
James F. McGee ◽  
Timo Saha

AbstractMany x-ray tubes, used by crystallographers and others, operate with the aid of a tungsten filament in the region of 2500°K, The high operating temperature results in evaporation of the filament material with two serious consequences. The first is a finite but relatively short lifetime. The second is contamination of the target and windows with tungsten. In addition, if the tube is of the demountable type, connected to an oil-diffusion pump and a mechanical fore-pump, carbonaceous deposits can be a problem. In a typical tube, the filament is mounted within a centimeter or two of the target. The resulting radiant heating of the target presents additional cooling problems especially with low melting-point targets. Many if not all of the above objectional features are circumvented by a plasma controlled x-ray tube using a low pressure atmosphere of helium and a cage-like cathode fabricated from nickel wire-mesh. An experimental model has been operated for several hours at 15 kv and 10 ma on an aluminum target. Scaling up of the apparatus will permit power dissipations in the kilowatt range limited mainly by the available power source or vaporization of the target material.

1967 ◽  
Vol 11 ◽  
pp. 177-184
Author(s):  
J. Gianelos ◽  
C. E. Wilkes

AbstractWe sought to determine how seriously surface roughness affects X-ray intensity measurements in polymers. Fourteen elements ranging from lead to silicon were added singly to fourteen batches of trans-1,4-polyisoprene. Smooth pressings of each batch were made, and intensity readings were taken (I0). Reproducibly rough surfaces were made from these by molding a square wire-mesh pattern into them, with the use of Tyler standard sieve screens. The amount of roughness was controlled by using screens of very fine to very coarse mesh. We studied the change in the X-ray intensity of the rough surfaces versus the smooth [(I/I0) × 100] with respect to: (1) the degree of roughness, (2) concentration of the added element, (3) emitted wavelength of the added element, (4) X-ray tube target material, and (5) correction for matrix effects on the intensity. We found that, at wavelengths emitted below 1 Å, intensity differences are small, regardless of which factors were varied. At wavelengths emitted above 1 Å, however, we found large differences. The intensity changes are highly dependent on roughness. Also, they become greater at the longer emitted wavelengths and with increasing concentration of added elements. Beginning with Ti Kα, losses are much higher with the use of chromium primary radiation than with tungsten. A technique of milling polyethylene into polymers with rough surfaces to provide a smooth surface is discussed.


Author(s):  
Werner P. Rehbach ◽  
Peter Karduck

In the EPMA of soft x rays anomalies in the background are found for several elements. In the literature extremely high backgrounds in the region of the OKα line are reported for C, Al, Si, Mo, and Zr. We found the same effect also for Boron (Fig. 1). For small glancing angles θ, the background measured using a LdSte crystal is significantly higher for B compared with BN and C, although the latter are of higher atomic number. It would be expected, that , characteristic radiation missing, the background IB (bremsstrahlung) is proportional Zn by variation of the atomic number of the target material. According to Kramers n has the value of unity, whereas Rao-Sahib and Wittry proposed values between 1.12 and 1.38 , depending on Z, E and Eo. In all cases IB should increase with increasing atomic number Z. The measured values are in discrepancy with the expected ones.


2005 ◽  
Vol 879 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

AbstractGe is deposited on HfO2 surfaces by chemical vapor deposition (CVD) with GeH4. 0.7-1.0 ML GeHx (x = 0-3) is deposited by thermally cracking GeH4 on a hot tungsten filament. Ge oxidation and bonding are studied at 300-1000 K with X-ray photoelectron spectroscopy (XPS). Ge, GeH, GeO, and GeO2 desorption are measured with temperature programmed desorption (TPD) at 400-1000 K. Ge initially reacts with the dielectric forming an oxide layer followed by Ge deposition and formation of nanocrystals in CVD at 870 K. 0.7-1.0 ML GeHx deposited by cracking rapidly forms a contacting oxide layer on HfO2 that is stable from 300-800 K. Ge is fully removed from the HfO2 surface after annealing to 1000 K. These results help explain the stability of Ge nanocrystals in contact with HfO2.


2021 ◽  
Vol 13 (2) ◽  
pp. 950
Author(s):  
Xing Wang ◽  
Jianfeng Li ◽  
Xiujie Jia ◽  
Mingliang Ma ◽  
Yuan Ren

Remanufacturing is one of the most effective strategies to achieve sustainable manufacturing and restore the performance of end-of-life products. However, the lack of an effective cleaning method to clean carbonaceous deposits severely hampers the remanufacturing of end-of-life engines. To explore an appropriate cleaning method, it is necessary to first study the characterization of the carbonaceous deposits. A broad range of analyses including X-ray fluorescence spectrometry, thermogravimetric analysis, 1H-nuclear magnetic resonance study, X-ray diffraction analysis, and scanning electron microscopy were performed to conduct an in-depth characterization of the carbonaceous deposits. The results showed that a hybrid structure composed of organics and inorganics is the most distinguishing feature of the carbonaceous deposit in end-of-life engines. The inorganics form the skeleton on which organics get attached, thereby resulting in a strong adhesion of the deposit and increasing the difficulty of cleaning. Therefore, a method in which several cleaning forces can be simultaneously applied is more suitable for the present purpose. Molten salt cleaning was chosen to verify the feasibility of this proposal. This method was shown to have the potential to effectively clean the carbonaceous deposit. This finding could contribute towards promoting the effective remanufacturing of end-of-life engines.


2013 ◽  
Vol 481 ◽  
pp. 133-136 ◽  
Author(s):  
T.N. Myasoedova ◽  
G.E. Yalovega ◽  
N.K. Plugotarenko ◽  
M. Brzhezinskaya ◽  
V.V. Petrov ◽  
...  

Copper oxides films as promising materials for gas sensors applications were studied. Copper oxide films were deposited onto Si/SiO2substrates using a citrate sol-gel method with the subsequent temperature treatment at 150-5000C. These films were characterized by means of secondary electron microscopy (SEM) and X-ray-absorption near-edge structure (XANES) spectroscopy. The prepared films were utilized in NO2sensors. The dependences of the NO2response on the operating temperature and NO2concentration (10-200 ppm) were investigated. The maximum NO2response was achieved for the film annealed at 2500C.


2021 ◽  
Vol 105 ◽  
pp. 110-118
Author(s):  
Jie Si Ma ◽  
Fu Sheng Li ◽  
Yan Chun Zhao

X-ray Fluorescence (XRF) analysis technology is used widely to detect and measure elemental compositions of target samples. The MCNP code developed by LANL can be utilized to simulate and generate the XRF spectrum of any sample with various elemental compositions. However, one shortcoming of MCNP code is that it takes quite a lot of time (in hours or longer) to generate one XRF spectrum with reasonable statistical precision; the other shortcoming is that MCNP code cannot produce L shell spectrum accurately. In this paper, a new computation model based on the Sherman equation (i.e., Fundamental Parameters, FP) is proposed to overcome the drawbacks of the MCNP code. The most important feature of this model is to achieve a full and accurate generation of spectral information of each element in a target material very rapidly (in seconds or less), including both K and L shell spectral peaks. Furtherly, it is demonstrated that the simulated data by this new mode match the experimental data very well. It proves that the proposed model can be a better alternative of MCNP code in the application of generation the XRF spectra of many materials, in terms of speed and accuracy. The proposed model can perform the simulation of XRF spectra in situ both fast and accurately, which is essential for real-time calculation of chemical composition by use of X-ray spectrometer, especially for those trace elements in target materials.


Author(s):  
V. B. Bessonov

Introduction. X-ray inspection plays a unique role among all nondestructive testing methods for products and materials due to sufficiently high resolution and high penetrability. The present study is designed to consider the key features of microfocus X-ray sources, their areas of application, and main technical characteristics.Aim. The paper aims to systematize information and review modern X-ray radiation sources for the implementation of microfocus radiography.Materials and methods. The main designs of microfocus X-ray tubes (soldered and demountable) were considered relying on the experience of the St Petersburg State Electrotechnical University in developing and operating such equipment, as well as the experience and open-access publications of foreign researchers and developers. Data collected by leading research teams over the last ten years were analyzed.Results. The paper presents design features for each main type of microfocus X-ray tubes – soldered and demountable. All key structural elements are considered: an anode assembly, a cathode assembly, and a focusing system. The influence of anode target material on the X-ray tube radiation spectrum is shown. An original design of a liquid-anode microfocus X-ray tube is described to demonstrate its key features and advantages. In addition, the paper gives an overview of cathodes used in microfocus X-ray tubes (tungsten cathode and lanthanum hexaboride cathode), as well as providing a detailed description of calculations performed for focusing systems. Finally, the designs of modern X-ray tubes are presented.Conclusion. Modern X-ray tubes are high-tech products that allow for high-resolution research of various objects. The main advantage of testing performed with the use of X-ray tubes consists in high resolution (micron and submicron). The X-ray images of test objects used to determine their spatial resolution are given, which clearly illustrate the vast possibilities of this technology. In addition, ways to improve microfocus X-ray tubes are briefly discussed. The considered materials can be useful in selecting a nondestructive testing tool, as well as in developing and creating X-ray systems on the basis of microfocus X-ray tubes.


FLUIDA ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 81-92
Author(s):  
Ade Yanti Nurfaidah ◽  
Dheana Putri Lestari ◽  
Rheisya Talitha Azzahra ◽  
Dian Ratna Suminar

Abstrak Nikel merupakan unsur logam yang penggunaannya sudah dikenal dalam industri, terutama pada pelapisan logam dan paduan. Pengolahan nikel dari bijih nikel laterit (jenis Limonit) menggunakan proses hidrometalurgi Atmospheric Pressure Acid Leaching (APAL) yang dinilai lebih ekonomis karena pemakaian energi dan biaya operasional cukup rendah. Media pelarut yang digunakan berupa larutan asam sulfat (H2SO4). Sebelum dilakukan pengolahan, karakterisasi bijih dilakukan menggunakan X-Ray Diffraction (XRD), X-Ray Flourscence (XRF), dan Scanning Electron Microscopy (SEM). Metode penelitian yang dilakukan yaitu literature review. Hasil review dari beberapa artikel jurnal menunjukkan bahwa kadar nikel yang terkandung pada suatu bijih sekitar 1,42%, 2,94 dan 0,95% serta sisanya adalah pengotor. Kondisi operasi yang tepat akan menghasilkan pemurnian nikel yang cukup tinggi. Parameter kondisi operasi yang dapat memengaruhi proses pemisahan nikel diantaranya suhu operasi yang ditunjukan dengan semakin meningkatnya % ekstraksi nikel seiring dengan kenaikan suhu. Selain suhu operasi, konsentrasi pelarut juga salah satu parameter yang mempengaruhi % ekstraksi karena semakin tinggi ion H+ akan memudahkan proses pelarutan sehingga akan mengikat Nikel Oksida yang terdapat pada bijih. Suhu paling optimal untuk menghasilkan nikel dengan kemurnian tinggi dalam operasi pelindian atmosferik adalah 90°C dan konsentrasi asam sulfat 5 M.  Kata Kunci: Nikel, pelindian, suhu, konsentrasi   Abstract  Nickel is a metal element whose use is well known in industry, especially in metal and alloy plating. The processing of nickel from laterite nickel ore (Limonite type) uses a hydrometallurgical process of Atmospheric Pressure Acid Leaching (APAL) which is considered more economical because energy consumption and operational costs are quite low. The solvent medium used is a solution of sulfuric acid (H2SO4). Prior to processing, ore characterization was carried out using X-Ray Diffraction (XRD), X-Ray Flourscence (XRF), and Scanning Electron Microscopy (SEM). The research method literature review article. The results of reviews from several journal articles show that the nickel content contained in an ore is around 1.42%, 2.94% and 0.95% and the rest is impurity. The right operating conditions will result in relatively high nickel refining. The operating condition parameters that can affect the nickel separation process include the operating temperature which is indicated by the increasing % nickel extraction along with the increase in temperature. In addition to operating temperature, solvent concentration is also one of the parameters that affects the% extraction because the higher the H+ ion will facilitate the dissolving process so that it will bind to the Nickel Oxide contained in the ore. The optimal temperature to produce high-purity nickel in atmospheric leaching operations is 90°C and a sulfuric acid concentration of 5 M. Keywords: Nickel, leaching, temperature, concentration


1986 ◽  
Vol 1 (5) ◽  
pp. 629-634 ◽  
Author(s):  
J.W. McCamy ◽  
M.J. Godbole ◽  
A.J. Pedraza ◽  
D.H. Lowndes

A simple, precise method for obtaining the average thickness of an amorphous layer formed by any surface treatment has been developed. The technique uses an x-ray diffractoeter to measure the reduction in the integrated intensity of several diffracted x-ray lines due to the near surface amorphous layer. The target material for generation of x rays is selected so that the emitted x rays are strongly absorbed by the specimen. This method permits thickness measurements down to ∼ 100 nm. It has been tested on a specimen of Fe80B20 on which an amorphous layer was produced by pulsed XeCl (308 nm) laser irradiation; the amorphous layer thickness was found to be 1.34 (∼0.1) um.


In a previous paper it was shown that 0·0007 per cent, of 29 Cu and 0·0003 per cent, of 26 Fe could be detected in 30 Zn by atomic analysis by X-ray spectroscopy. This sensitivity is greater than that which was claimed by Noddack, Tacke, and Berg, who set the limit at about 0·1 per cent, for non-metals, and by Hevesy, who stated it to be about 0·01 per cent, for an element present in an alloy. It was later suggested by Hevesy that the high value of the sensitivity which we found might result from the fact that some of the alloys we had used were composed of elements of almost equal atomic number, and that the sensitivity would be smaller for a constituent of low atomic number mixed with a major constituent of high atomic number. To elucidate these disagreements we have made further observations of the sensitivity with elements of different atomic number and have investigated the conditions which can influence the sensitivity. The Factors Determining Sensitivity . The detection of one element in a mixture of elements depends upon the identification of its K or L lines in the general spectrum emitted by the mixture under examination. The intensity with which these lines are excited in the target (“excited intensity”) is proportional to the number of atoms of the constituent element excited, i. e ., to its concentration and to the volume of the target in which the cathode ray energy is absorbed. The depth of penetration of the cathode rays is determined by the density of the target material and by their velocity ( i. e ., by the voltage applied to the X-ray tube). Schonland has shown that the range of homogeneous cathode rays in different elements, expressed as a mass per unit area, is approximately constant and is independent of the atomic number of the absorbing element. When their velocity is increased, the cathode rays will penetrate to a greater depth, and therefore a greater number of atoms of all constituents will be ionised. This will increase the “excited intensity” of the lines due to the particular constituent sought equally with those lines of the other elements present. The intensity of a line further depends upon the difference between the voltage applied to the X-ray tube and that necessary to excite the series. For these reasons, a high applied voltage is required for a high sensitivity.


Sign in / Sign up

Export Citation Format

Share Document