scholarly journals Evaluation of Silkworm Lines against Variations in Temperature and RH for Various Parameters of Commercial Cocoon Production

2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Mubashar Hussain ◽  
Shakil Ahmad Khan ◽  
Muhammad Naeem ◽  
Tahir Aqil ◽  
Rizwan Khursheed ◽  
...  

Eleven inbred silkworm lines (M-101, M-103, M-104, M-107, Pak-1, Pak-3, Pak-2, Pak-4, PFI-1, PFI-2, and S-1) were evaluated for various parameters of cocoon production under different temperature and relative humidity conditions (25±1,30±1, and35±1 °Cin combination with 55, 65, and 75% RH for three hrs during 4th and 5th instar. The experiment was laid out in factorial design with three replications. Significant variations in the performance of silkworm lines were noticed due to influence of temperature and RH treatment on 4th and 5th instar larvae. The silkworm lines performed significantly better when the larvae were reared at25±1 °Cwith 70–80% RH while almost all the silkworm lines showed poor performance at higher temperature exposures for 3 hrs. Exposures to lower humidity (55%) during larval rearing in 4th and 5th instar at different temperatures (25±1,30±1, and35±1 °C) resulted in lowering the cocoon production. The cumulative evaluation index values for different traits showed that Pak-4 (61.42) was the best line followed by M-101 (59.15), Pak-2 (56.37), Pak-3 (52.83) PFI-I (52.62), and M-107(50.03). The study clearly underlines the importance of optimization of environmental conditions during larval rearing in relation to commercial cocoon production. The investigations strongly recommend that temperature and relative humidity in the range of 25-26 °Cand 70–80%, respectively, are mandatory for excellent results of cocoon production and Pak-4, M-101, Pak-2, Pak-3, PFI-I, and M-107 were suitable for commercial rearing.

2014 ◽  
Vol 941-944 ◽  
pp. 835-841 ◽  
Author(s):  
Zhi Tao Chen ◽  
Mao Guang Li ◽  
Ying Zi Yang ◽  
Qi Liu

The ring test method is used to evaluate the behavior of concrete under restrained shrinkage. Four kinds of environmental conditions (20±1°C, RH60±5%; 35±1°C, RH60±5%; 50±1°C, RH15±5%; 65±1°C, RH15±5%) were designed to investigate the effect the environmental condition on the shrinkage behavior of concrete prepared with different kinds of mineral admixtures. The results show that higher temperature and lower relative humidity can increase the risk of shrinkage cracking. The addition of different mineral admixtures increases the shrinkage of concrete at room conditions. In the case of higher temperature and lower relative humidity, the addition of mineral admixtures can delay the shrinkage cracking in the test duration.


2014 ◽  
Vol 633 ◽  
pp. 3-6 ◽  
Author(s):  
Xiang Yun Lu ◽  
Lan Chen ◽  
Rui Lin Heng ◽  
Yun Zhang Cheng ◽  
Umezuruike Linus Opara

Powder flowability is one of the most important properties affecting the filling and delivering processes of dry powder inhalations. When the powder is exposed to different environmental (temperature, relative humidity (RH)) conditions, the interaction between particulates would influence the flowability of powders. Blends of 83% coarse lactose (D50=126μm) and 17% fine lactose (D50= 7μm) were prepared at three different mixing environments and the effects of temperature and humidity on powder flowability were investigated. Results indicated that mixing under relatively higher temperature and lower RH environmental conditions improved the flowability of lactose blends.


1975 ◽  
Vol 107 (1) ◽  
pp. 95-98 ◽  
Author(s):  
P. Martel ◽  
H. J. Svec ◽  
C. R. Harris

AbstractA technique for mass rearing the carrot weevil, Listronotus oregonensis (LeConte), is described. Adults were provided with carrot roots for food and oviposition sites. Larvae developed directly in these roots. Different temperature regimens for larval rearing were tested and best results were obtained using 21 °C for the first 2 weeks of larval development and 27 °C thereafter. Photoperiod was maintained at 16 h and relative humidity at 70%. Under these conditions, 97.6% of adults emerged in 39–42 days.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ramasamy Jayamurugan ◽  
B. Kumaravel ◽  
S. Palanivelraja ◽  
M. P. Chockalingam

The concentration of air pollutants in ambient air is governed by the meteorological parameters such as atmospheric wind speed, wind direction, relative humidity, and temperature. This study analyses the influence of temperature and relative humidity on ambient SO2, NOx, RSPM, and SPM concentrations at North Chennai, a coastal city in India, during monsoon, post-monsoon, summer, and pre-monsoon seasons for 2010-11 using regression analysis. The results of the study show that both SO2 and NOx were negatively correlated in summer (r2=0.25 for SO2 and r2=0.15 for NOx) and moderately and positively correlated (r2=0.32 for SO2 and r2=0.51 for NOx) during post-monsoon season with temperature. RSPM and SPM had positive correlation with temperature in all the seasons except post-monsoon one. These findings indicate that the influence of temperature on gaseous pollutant (SO2 & NOx) is much more effective in summer than other seasons, due to higher temperature range, but in case of particulate, the correlation was found contradictory. The very weak to moderate correlations existing between the temperature and ambient pollutant concentration during all seasons indicate the influence of inconstant thermal variation in the coastal region. Statistically significant negative correlations were found between humidity and particulates (RSPM and SPM) in all the four seasons, but level of correlation was found moderate only during monsoon (r2=0.51 and r2=0.41) in comparison with other three seasons and no significant correlation was found between humidity and SO2, NOx in all the seasons. It is suggested from this study that the influence of humidity is effective on subsiding particulates in the coastal region.


2017 ◽  
Vol 20 (1) ◽  
Author(s):  
Piotr Homa ◽  
Beata Tryba

AbstractLatex (LX) paint was tested for photocatalytic decomposition of benzo[a]pyrene (BaP) under different conditions of relative humidity (RH), temperature and irradiation. Porcelain trays coated with LX paint were loaded with BaP solution, which was dissolved in acetonitrile. Trays were placed inside the photoreactor and irradiated with UV or a fluorescent lamp. Different conditions of RH and temperature inside the photoreactor were used. BaP preliminarily adsorbed on LX paint surface was decomposed faster at higher temperature and lower RH. For example, at 42 °C and RH 20 % BaP decomposition rate reached 64 %. At same temperature and with RH of 80 % this rate decreased to only 42 %. It was also demonstrated that at high RH (80 %) and under UV irradiation water contact angle on the paint surface was decreasing at a lower rate than under RH of 20 %. It was also proven that BaP could be sufficiently decomposed under irradiation by fluorescent lamp (59 % in comparison to 64 % under same environmental conditions with use of UV light). However, its decomposition rate was approximately 5 times slower than under UV light


2016 ◽  
Vol 14 (1) ◽  
pp. 289-298 ◽  
Author(s):  
Shashi Bala Gautam ◽  
Siraj Alam ◽  
Suantak Kamsonlian

AbstractThe influence of temperature on the sorption of As(III) onto iron oxide coated quartz sand (IOCQS) was studied in the temperature range of 298–318 K. An increase in temperature was found to have positive influence on the adsorption of As(III) ions onto IOCQS surfaces because of increased diffusion of As(III) ions into the pores of IOCQS at higher temperature. The enhanced sorption at higher temperature indicated endothermic adsorption process. Equilibrium isotherms for the adsorption of As(III) on IOCQS were analyzed at different temperatures. Among the conventional isotherms, Freundlich isotherm best predicted specific uptake at different temperatures, followed by Redlich–Peterson, Langmuir and Temkin isotherm models. Various thermodynamic parameters namely heat of adsorption (∆H0), change in entropy (∆S0), and Gibbs free energy change (∆G0) were computed from the equilibrium constant (KD) values. The results indicated positive value for heat of adsorption ∆H0, a positive ∆S0 and a negative ∆G0. Finally, the isosteric heat of adsorption (ΔHst,a) values were calculated and quantitatively correlated with the fractional loading of As(III) onto IOCQS. The surface heterogeneity of adsorbents could be quantitatively described with an isosteric enthalpy function of fractional loading based on Do and Do model. The results show that the IOCQS possesses heterogeneous surface with sorption sites having different activities.


Author(s):  
Justin Boyles ◽  
Emily Johnson ◽  
Nathan W. Fuller ◽  
Kirk Silas ◽  
Lily Hou ◽  
...  

Hibernators adjust the expression of torpor behaviourally and physiologically to balance the benefits of energy conservation in hibernation against the physiological and ecological costs. Small fat-storing species, like many cave-hibernating bats, have long been thought to be highly constrained in their expression of hibernation because they must survive winter relying only on endogenous energy stores. We evaluated behavioural microclimate selection in tri-colored bats (Perimyotis subflavus (Cuvier, 1832)) across a three-month hibernation experiment under laboratory conditions. We also opportunistically tested for evidence of acclimatization in torpid metabolic rate (TMR). When given access to gradients in microclimate, bats tended to choose the warmest temperature available (11°C) while almost completely avoiding the driest condition available (85% relative humidity at 8°C). Further, bats held at different temperatures over the course of the hibernation showed no differences in TMR when measured under common conditions at the end of hibernation. Taken together, our results suggest selective pressures to conserve energy during hibernation are not overwhelmingly strong and further support the proposition that optimal expression of hibernation is something less than the maximal expression of hibernation unless the animal is nearing starvation.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e043863
Author(s):  
Jingyuan Wang ◽  
Ke Tang ◽  
Kai Feng ◽  
Xin Lin ◽  
Weifeng Lv ◽  
...  

ObjectivesWe aim to assess the impact of temperature and relative humidity on the transmission of COVID-19 across communities after accounting for community-level factors such as demographics, socioeconomic status and human mobility status.DesignA retrospective cross-sectional regression analysis via the Fama-MacBeth procedure is adopted.SettingWe use the data for COVID-19 daily symptom-onset cases for 100 Chinese cities and COVID-19 daily confirmed cases for 1005 US counties.ParticipantsA total of 69 498 cases in China and 740 843 cases in the USA are used for calculating the effective reproductive numbers.Primary outcome measuresRegression analysis of the impact of temperature and relative humidity on the effective reproductive number (R value).ResultsStatistically significant negative correlations are found between temperature/relative humidity and the effective reproductive number (R value) in both China and the USA.ConclusionsHigher temperature and higher relative humidity potentially suppress the transmission of COVID-19. Specifically, an increase in temperature by 1°C is associated with a reduction in the R value of COVID-19 by 0.026 (95% CI (−0.0395 to −0.0125)) in China and by 0.020 (95% CI (−0.0311 to −0.0096)) in the USA; an increase in relative humidity by 1% is associated with a reduction in the R value by 0.0076 (95% CI (−0.0108 to −0.0045)) in China and by 0.0080 (95% CI (−0.0150 to −0.0010)) in the USA. Therefore, the potential impact of temperature/relative humidity on the effective reproductive number alone is not strong enough to stop the pandemic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Houssine Benabdelhalim ◽  
David Brutin

AbstractBlood pools can spread on several types of substrates depending on the surrounding environment and conditions. Understanding the influence of these parameters on the spreading of blood pools can provide crime scene investigators with useful information. The focus of the present study is on phase separation, that is, when the serum spreads outside the main blood pool. For this purpose, blood pools with constant initial masses on wooden floors that were either varnished or not were created at ambient temperatures of $$21~^{\circ }\hbox {C}$$ 21 ∘ C , $$29~^{\circ }\hbox {C}$$ 29 ∘ C , and $$37~^{\circ }\hbox {C}$$ 37 ∘ C with a relative humidity varying from 20 to 90%. The range $$21~^{\circ }\hbox {C}$$ 21 ∘ C to $$37~^{\circ }\hbox {C}$$ 37 ∘ C covers almost all worldwide indoor cases. The same whole blood from the same donor was used for all experiments. As a result, an increase in relative humidity was found to result in an increase in the final pool area. In addition, at the three different experimental temperatures, the serum spread outside the main pool at relative humidity levels above 50%. This phase separation is more significant on varnished substrates, and does not lead to any changes in the drying morphology. This phenomenon is explained by the competition between coagulation and evaporation.


Sign in / Sign up

Export Citation Format

Share Document