scholarly journals Smart Magnetically Responsive Hydrogel Nanoparticles Prepared by a Novel Aerosol-Assisted Method for Biomedical and Drug Delivery Applications

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Ibrahim M. El-Sherbiny ◽  
Hugh D. C. Smyth

We have developed a novel spray gelation-based method to synthesize a new series of magnetically responsive hydrogel nanoparticles for biomedical and drug delivery applications. The method is based on the production of hydrogel nanoparticles from sprayed polymeric microdroplets obtained by an air-jet nebulization process that is immediately followed by gelation in a crosslinking fluid. Oligoguluronate (G-blocks) was prepared through the partial acid hydrolysis of sodium alginate. PEG-grafted chitosan was also synthesized and characterized (FTIR, EA, and DSC). Then, magnetically responsive hydrogel nanoparticles based on alginate and alginate/G-blocks were synthesized via aerosolization followed by either ionotropic gelation or both ionotropic and polyelectrolyte complexation using CaCl2or PEG-g-chitosan/CaCl2as crosslinking agents, respectively. Particle size and dynamic swelling were determined using dynamic light scattering (DLS) and microscopy. Surface morphology of the nanoparticles was examined using SEM. The distribution of magnetic cores within the hydrogels nanoparticles was also examined using TEM. In addition, the iron and calcium contents of the particles were estimated using EDS. Spherical magnetic hydrogel nanoparticles with average particle size of 811 ± 162 to 941 ± 2 nm were obtained. This study showed that the developed method is promising for the manufacture of hydrogel nanoparticles, and it represents a relatively simple and potential low-cost system.

2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


2016 ◽  
Vol 881 ◽  
pp. 485-490
Author(s):  
Nelcy D.S. Mohallem ◽  
Juliana B. da Silva ◽  
Cristiana P. Rezende

Zinc Oxide (ZnO) is a multifunctional material, which produces radionuclides of gallium by irradiation, widely used in diagnosis and nuclear medicine. In this work, two precursors were tested as well as two routes of synthesis, with the objective of obtaining nanoparticles appropriate to the production of pellets with grain size and porosity suitable for target preparation used in the radioisotope production by irradiation. The sintered pellets obtained from zinc acetate and NH4OH, and freeze-dried presented density of 90% of the theoretical density, average particle size of 1 μm and macropore size of 500 nm. These targets generated radionuclide of gallium (67Ga and 66Ga) inside the pores, without rupture of the pellets, confirmed by gamma spectroscopy, at low cost of production.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 217-221
Author(s):  
SUMISTHA DAS ◽  
NITAI DEBNATH ◽  
R. L. BRAHMACHARY ◽  
RAMESH CHANDRA ◽  
BISWAJIT ROY ◽  
...  

Drinking colloidal gold as elixir of life is an age-old practice worldwide. A large body of data containing patients' experiences after intake of colloidal gold for long duration would be available in the medical records of hospitals. ZnO has been approved by FDA for topical use and not for oral intake. Drosophila melanogaster (wild type) strains were fed with physiologically relevant concentrations of nano-gold and nano- ZnO along with appropriate controls. Citrate-capped nano-gold (average particle size is 15–20 nm) synthesized by reducing hydrogen tetrachloroaurate with 1% trisodium citrate and custom-made nano- ZnO , purchased from M K Implex, Canada (average particle size 50 nm) were used as treatments. Microarray studies revealed that fly trehalose receptor genes, Tre and Tre1, are both unaffected after nano-gold and nano- ZnO treatment. Gr64 subfamily members (encoding sugar receptors like glucose, sucrose, and maltose), for example, Gr64a-b become downregulated, but Gr64c, Gr64d, Gr64f remain unaltered in case of both the treatments. Among bitter receptor genes, Gr66a is the most well studied and shows significant downregulation by nano-gold and not by nano- ZnO . Ppk11 and Ppk19 are gustatory ion channel genes which modulate salt perception. Ppk11 was found to be downregulated by both nano-gold and nano- ZnO , while ppk19 expression is suppressed by nano-gold treatment but not by nano- ZnO . The effects of these two nanoparticles on pheromone receptors (Gr32a, Gr39a, and Gr68a) and CO 2 receptors (Gr21a and Gr63a) are presented. To the best of our knowledge, this is the first report on the effect of pure nanoparticles on gustation. Data has been analyzed in the light of the age-old tradition of oral administration of the nano-gold viz-a-viz topical use of nano- ZnO . These results would have far reaching implications in the design of nano-gold mediated oral drug delivery of cancer and other drugs as well as nano- ZnO coated drugs/cosmetics and nano- ZnO carrier based drug delivery in skins and in other topical applications.


2011 ◽  
Vol 335-336 ◽  
pp. 474-477 ◽  
Author(s):  
Guang Wang ◽  
Pu Wang Li ◽  
Zheng Peng ◽  
Mao Fang Huang ◽  
Ling Xue Kong

Chitosan nanoparticles were successfully prepared by chemical cross-linking with vanillin. The nanoparticles were spherical in shape with smooth surface, and the average particle size of chitosan nanoparticles was 141 nm. The formulation of chitosan nanoparticles is based on Shiff reaction between aldehyde group of vanillin and amino group of chitosan. Chitosan nanoparticles prepared by crosslinking with vanillin are promising vehicle for the drug delivery of various anticancer drugs in the chemotherapy of cancers.


Nanoscale ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 6192-6205 ◽  
Author(s):  
Sajini D. Hettiarachchi ◽  
Regina M. Graham ◽  
Keenan J. Mintz ◽  
Yiqun Zhou ◽  
Steven Vanni ◽  
...  

Most of the dual nano drug delivery systems fail to enter malignant brain tumors due to a lack of proper targeting systems and the size increase of the nanoparticles after drug conjugation. Therefore, a triple conjugated system was developed with carbon dots (C-dots) which has an average particle size of 1.5–1.7 nm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeshimebet Simeon Erchamo ◽  
Tadios Tesfaye Mamo ◽  
Getachew Adam Workneh ◽  
Yedilfana Setarge Mekonnen

AbstractIn this report, the utilization of mixed methanol–ethanol system for the production of biodiesel from waste cooking oil (WCO) using enhanced eggshell-derived calcium oxide (CaO) nano-catalyst was investigated. CaO nano-catalyst was produced by calcination of eggshell powder at 900 °C and followed by hydration-dehydration treatment to improve its catalytic activity. The particle size, morphology, and elemental composition of a catalyst were characterized by using XRD, SEM, and EDX techniques, respectively. After hydration-dehydration the shape of a catalyst was changed from a rod-like to honeycomb-like porous microstructure. Likewise, average particle size was reduced from 21.30 to 13.53 nm, as a result, its surface area increases. The main factors affecting the biodiesel yield were investigated, accordingly, an optimal biodiesel yield of 94% was obtained at 1:12 oil to methanol molar ratio, 2.5 wt% catalyst loading, 60 °C, and 120-min reaction time. A biodiesel yield of 88% was obtained using 6:6 equimolar ratio of methanol to ethanol, the yield even increased to 91% by increasing the catalyst loading to 3.5 wt%. Moreover, by slightly increasing the share of methanol in the mixture, at 8:4 ratio, the maximum biodiesel yield could reach 92%. Therefore, we suggest the utilization of methanol–ethanol mixture as a reactant and eggshell-derived CaO as a catalyst for enhanced conversion of WCO into biodiesel. It is a very promising approach for the development of low-cost and environmentally friendly technology. Properties of the biodiesel were also found in good agreement with the American (ASTM D6571) fuel standards.


2014 ◽  
Vol 938 ◽  
pp. 52-57 ◽  
Author(s):  
Nor Azrina Resali ◽  
Koay Mei Hyie ◽  
Wan Normimi Roslini Abdullah ◽  
Nor Hayati Saad

Electrodeposition is known as a simple and low-cost method to synthesize good-quality coating with excellent hardness. In this work, the morphology changes on Cobalt coating with the addition of iron and nickel elements were investigated. Co (Cobalt) and Co-based alloy coatings were prepared by electrodeposition technique using sulfate-based electrolytes. The process was conducted at 50°C temperature in an acidic environment (pH 3). The pure Co coating shows the tendency to form snowflake-like morphology structure. The dendritic morphology appeared in the Co-Fe coatings. However, the dendritic morphology was totally disappeared in the Co-Ni-Fe morphology and replaced by spherical morphology. The crystal structure of Co-Ni-Fe coating changed from bcc into mixed bcc+fcc structure with the addition of Ni element in Co-Fe composition. The Ni element which had been introduced in the Co-Fe composition improved the surface morphology and reduced the average particle size. The surface morphologies in the coatings affect the particles size and hardness property. This may due to the formation of full, compact coatings morphology and introduction of particles boundaries interphase. The Co-Ni-Fe coating with smaller particle size, less void formation and mixed crystal structure of bcc+fcc was roughly two times harder than pure Co.


2019 ◽  
Vol 16 (4) ◽  
pp. 341-354 ◽  
Author(s):  
Mohammad Nasiri ◽  
Amir Azadi ◽  
Mohammad Reza Saghatchi Zanjani ◽  
Mehrdad Hamidi

Purpose: As an anti-retroviral Protease Inhibitor (PI), Indinavir (IDV) is part of the regimen known as Highly Active Anti-Retroviral Therapy (HAART) widely used for Human Immunodeficiency Virus (HIV) infection. The drug efficiency in treatment of the brain manifestations of HIV is, however, limited which is mainly due to the efflux by P-glycoprotein (P-gp) expressed at the Blood-Brain Barrier (BBB). Methods: To overcome the BBB obstacle, NLCs were used in this study as carriers for IDV, which were optimized through two steps: a “one-factor-at-a-time” screening followed by a systematic multiobjective optimization. Spherical smooth-surfaced Nanoparticles (NPs), average particle size of 161.02±4.8 nm, Poly-Dispersity Index (PDI) of 0.293±0.07, zeta potential of -40.62±2.21 mV, entrapment efficiency of 93±1.58%, and loading capacity of 9.15±0.15% were obtained after optimization which were, collectively, appropriate in terms of the objective of this study. Result: The surface of the optimized NPs was, then, modified with human Transferrin (TR) to improve the drug delivery. The particle size, zeta potential, and PDI of the TR-modified NLCs were 185.29±6.7nm, -28.68±3.37 mV, and 0.247±0.06, respectively. The in vitro release of IDV molecules from the NPs was best fitted to the Weibull model indicating hybrid diffusion/erosion behavior. Conclusion: As the major in vivo findings, compared to the free drug, the NLCs and TR-NLCs displayed significantly higher and augmented concentrations in the brain. In this case, NLC and TR-NLC were 6.5- and 32.75-fold in their values of the brain uptake clearance compared to free drug.


Author(s):  
Baihui Yang

The present investigation aimed at developing Doxorubicin (DOX)-loaded liposome-mediated drug delivery system for head and neck cancer. The liposomes were prepared by film hydration technique using egg phosphatidylcholine and cholesterol using Box-Behnken statistical design. The prepared liposomes were evaluated for the percentage encapsulation efficiency, particle size and in vitro release. The average particle size of the DOX-encapsulating liposomes formulated by thin-film hydration technique was between 150.5 nm and 200 nm with an average particle size of 165.80 nm. The PDI (Polydispersity index) was found to be 0.315 which indicated that particles were monodispersed and narrow-dispersed. In vitro drug release of DOX-loaded liposomes and DOX-loaded peptide-conjugated liposomes was performed in phosphate buffered saline (pH 7.4) and both formulations showed sustained release behavior over the period of 40 hours. The optimized liposomal formulation was conjugated to a peptide and subsequently radiolabeled with 186Re-perrhenate solution and BMEDA-glucoheptonate-stannous chloride solution. Comparative cytotoxicity assay of DOX, DOX-liposomes and DOX-liposomes-peptide on SCC9 cells was performed and it was found that liposomal formulation was not cytotoxic. The antitumor efficacy of 186Re-liposomes, unlabelled liposomes, 186Re-perrhenate solution and 186Re-BMEDA solution was determined in SCC cell lines injected into BALB/c-nu/nu athymic nude rats. The efficacy of antitumor activity was found to be in the following order: peptide-conjugated DOX-loaded liposomes>unlabelled liposomes>186Re-perrhenate solution>186Re-BMEDA solution. The present investigation showed that peptide-conjugated DOX-loaded liposomes significantly suppress the tumor growth in the nude rat model. These results suggest the significant potential of liposomes as carriers for clinical applications in head and neck cancer.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


Sign in / Sign up

Export Citation Format

Share Document