scholarly journals OptimalI-VCurve Scan Time of Solar Cells and Modules in Light of Irradiance Level

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Matic Herman ◽  
Marko Jankovec ◽  
Marko Topič

High-efficiency solar cells and modules exhibit strong capacitive character resulting in limited speed of transient responses. A too fastI-Vcurve measurement can thus introduce a significant error due to its internal capacitances. This paper analyses theI-Vcurve error of a measured solar cell or module in light of scan time and irradiance level. It rests on a two-diode solar cell model extended by two bias-dependent capacitances, modelling the junction, and the diffusion capacitance. A method for determination of all extended model parameters from a quasistaticI-Vcurve and open-circuit voltage decay measurement is presented and validated. Applicability of the extended model and the developed parameter extraction method to PV modules is demonstrated and confirmed. SPICE simulations of the extended model are used to obtain theI-Vcurve error versus scan time dependence and theI-Vcurve hysteresis. Determination of the optimal scan time is addressed, and finally the influence of the irradiance level on theI-Vcurve scan time and error is revealed. The method is applied but is not limited to three different wafer-based silicon solar cell types.

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Mihai Răzvan Mitroi ◽  
Valerică Ninulescu ◽  
Laurenţiu Fara

A tandem solar cell consisting of a bottom c-Si high-efficiency subcell and a top low-cost Cu2O subcell in parallel configuration is evaluated for the first time by a use of an electrical model. A numerical simulation based on the single-diode model of the solar cell is performed. The numerical method determines both the model parameters and the parameters of the subcells and tandem from the maximization of output power. The simulations indicate a theoretical limit value of the tandem power conversion efficiency of 31.23% at 298 K. The influence of temperature on the maximum output power is analyzed. This tandem configuration allows a great potential for the development of a new generation of low-cost high-efficiency solar cells.


2014 ◽  
Vol 27 (1) ◽  
pp. 57-102 ◽  
Author(s):  
Adelmo Ortiz-Conde ◽  
Francisco García-Sánchez ◽  
Juan Muci ◽  
Andrea Sucre-González

This article presents an up-to-date review of several methods used for extraction of diode and solar cell model parameters. In order to facilitate the choice of the most appropriate method for the given particular application, the methods are classified according to their lumped parameter equivalent circuit model: single-exponential, double-exponential, multiple-exponential, with and without series and parallel resistances. In general, methods based on numerical integration or optimization are recommended to reduce the possible uncertainties arising from measurement noise.


2012 ◽  
Vol 455-456 ◽  
pp. 419-423
Author(s):  
Yuan Zhao ◽  
Ming Yu Sheng

The photoelectrical responsibility of single photo-electronic devices makes it difficult to achieve the high efficiency under light intensity range. The key to overcome limits is to develop the system consisting of a set of solar cells. In this work, we predict the model parameters under various conditions combination of three model parameters change with the relationship between light and temperature and then predict the value of the model parameters under various conditions and thus predict the components of the output characteristics under 0.5S UN--6.0 SUN. The results given in this work will provide a way to realize a high photo-electric conversion efficiency of the solar system in application.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 592
Author(s):  
Myeong Sang Jeong ◽  
Yonghwan Lee ◽  
Ka-Hyun Kim ◽  
Sungjin Choi ◽  
Min Gu Kang ◽  
...  

In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells.


2006 ◽  
Vol 910 ◽  
Author(s):  
Qi Wang ◽  
Matt P. Page ◽  
Eugene Iwancizko ◽  
Yueqin Xu ◽  
Yanfa Yan ◽  
...  

AbstractWe have achieved an independently-confirmed 17.8% conversion efficiency in a 1-cm2, p-type, float-zone silicon (FZ-Si) based heterojunction solar cell. Both the front emitter and back contact are hydrogenated amorphous silicon (a-Si:H) deposited by hot-wire chemical vapor deposition (HWCVD). This is the highest reported efficiency for a HWCVD silicon heterojunction (SHJ) solar cell. Two main improvements lead to our most recent increases in efficiency: 1) the use of textured Si wafers, and 2) the application of a-Si:H heterojunctions on both sides of the cell. Despite the use of textured c-Si to increase the short-circuit current, we were able to maintain the same 0.65 V open-circuit voltage as on flat c-Si. This is achieved by coating a-Si:H conformally on the c-Si surfaces, including covering the tips of the anisotropically-etched pyramids. A brief atomic H treatment before emitter deposition is not necessary on the textured wafers, though it was helpful in the flat wafers. It is essential to high efficiency SHJ solar cells that the emitter grows abruptly as amorphous silicon, instead of as microcrystalline or epitaxial Si. The contact on each side of the cell comprises a thin (< 5 nm) low substrate temperature (~100°C) intrinsic a-Si:H layer, followed by a doped layer. Our intrinsic layers are deposited at 0.3-1.2 nm/s. The doped emitter and back-contact layers were deposited at a higher temperature (>200°C) and grown from PH3/SiH4/H2 and B2H6/SiH4/H2 doping gas mixtures, respectively. This combination of low (intrinsic) and high (doped layer) growth temperatures was optimized by lifetime and surface recombination velocity measurements. Our rapid efficiency advance suggests that HWCVD may have advantages over plasma-enhanced (PE) CVD in fabrication of high-efficiency heterojunction c-Si cells; there is no need for process optimization to avoid plasma damage to the delicate, high-quality, Si wafers.


2004 ◽  
Vol 27 (2) ◽  
pp. 61-67
Author(s):  
S. Dib ◽  
C. Salame ◽  
N. Toufik ◽  
A. Khoury ◽  
F. Pélanchon ◽  
...  

A new method for the extraction of junction parameters from a description of the current–voltage characteristic is developed. A simulation is performed and a high accuracy is obtained for the determination of the singleexponential model parameters. The method is easy to implement in a control process for device characterization. An application, achieved to observe the degradation of the emitter–base junction of a bipolar transistor during an aging experiment, shows that the evolutions of the single exponential model parameters versus time introduce a means for degradation quantification.


1998 ◽  
Vol 507 ◽  
Author(s):  
M. Zeman ◽  
R.A.C.M.M. Van Swaaij ◽  
E. Schroten ◽  
L.L.A. Vosteen ◽  
J.W. Metselaar

ABSTRACTA calibration procedure for determining the model input parameters of standard a-Si:H layers, which comprise a single junction a-Si:H solar cell, is presented. The calibration procedure consists of: i) deposition of the separate layers, ii) measurement of the material properties, iii) fitting the model parameters to match the measured properties, iv) simulation of test devices and comparison with experimental results. The inverse modeling procedure was used to extract values of the most influential model parameters by fitting the simulated material properties to the measured ones. In case of doped layers the extracted values of the characteristic energies of exponentially decaying tail states are much higher than the values reported in literature. Using the extracted values of model parameters a good agreement between the measured and calculated characteristics of a reference solar cell was reached. The presented procedure could not solve directly an important issue concerning a value of the mobility gap in a-Si:H alloys.


2020 ◽  
Vol 14 ◽  

T Perovskite solar cells are becoming a dominant alternative for the traditional solar cells reaching an efficiency of 25.2% in a short span of twelve years (2008-2020). Here, we are going to describe a simple process to 'put a voice on a laser beam' and transmit it over a distance via a perovskite solar cell. This process considered as a fascinating example of amplitude modulation of light using sound vibrations. Therefore, the design and simulation of the perovskite solar cell will be described in details in this work. This design is concerned about the lead-free based perovskite solar cell model with the total proposed structure “Metal contact /PEDOT:PSS/ CH3NH3SnI3/ ZnO/ SnO2:F/ Metal contact”. To study the efficiency and the performances of a solar cell, the use of well-known software so-called SCAPS-1D is undertaken to perform the system simulation. The obtained results show also the influence of the doping level of the HTM layer and absorber layer thickness on the performance of the device. So far, only the simulation part has been validated. Despite the costeffect of the system prototype, however, it could be implemented here in the laboratory as perspective work.


Author(s):  
F. Bonnín-Ripoll ◽  
Ya. B. Martynov ◽  
R. G. Nazmitdinov ◽  
G. Cardona ◽  
R. Pujol-Nadal

A thorough optical + electrical + Lambertian scattering analysis determines the optimal thickness of a perovskite thin-film solar cell revealing its high efficiency with inorganic HTMs.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4667
Author(s):  
Laurentiu Fara ◽  
Irinela Chilibon ◽  
Ørnulf Nordseth ◽  
Dan Craciunescu ◽  
Dan Savastru ◽  
...  

This study is aimed at increasing the performance and reliability of silicon-based heterojunction solar cells with advanced methods. This is achieved by a numerical electro-optical modeling and reliability analysis for such solar cells correlated with experimental analysis of the Cu2O absorber layer. It yields the optimization of a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model. Experimental research of N-doped Cu2O thin films was dedicated to two main activities: (1) fabrication of specific samples by DC magnetron sputtering and (2) detailed characterization of the analyzed samples. This last investigation was based on advanced techniques: morphological (scanning electron microscopy—SEM and atomic force microscopy—AFM), structural (X-ray diffraction—XRD), and optical (spectroscopic ellipsometry—SE and Fourier-transform infrared spectroscopy—FTIR). This approach qualified the heterojunction solar cell based on cuprous oxide with nitrogen as an attractive candidate for high-performance solar devices. A reliability analysis based on Weibull statistical distribution establishes the degradation degree and failure rate of the studied solar cells under stress and under standard conditions.


Sign in / Sign up

Export Citation Format

Share Document