scholarly journals Temperature Dependence of the Raman Frequency of an Internal Mode for SiO2-Moganite Close to the α-β Transition

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Mustafa Cem Lider ◽  
Hamit Yurtseven

The temperature dependence of the 501 cm−1 frequency of the vibrational mode is analyzed for SiO2-moganite. The experimental data for the heating and cooling cycles of moganite from the literature is used for our analysis. The coexistence of α-β moganite is obtained over a finite temperature interval, and the α-β moganite transition at around 570 K is studied, as observed experimentally.

2010 ◽  
Vol 24 (31) ◽  
pp. 6069-6078 ◽  
Author(s):  
H. YURTSEVEN ◽  
T. TUNAY

We study here the Raman frequencies of the lattice modes (γ and β phases) and of an internal mode (γ phase) as a function of temperature in solid nitrogen. The frequency shift derived from the anharmonic self energy, is fitted to the experimental data for the Raman frequencies of the modes considered here in the γ and β phases of solid nitrogen. From our fittings, we find that the Raman frequencies of the lattice modes decrease, whereas those of the internal mode increase with increasing temperature in solid nitrogen. The unusual behavior of the internal mode indicates that the interaction mechanism should be different in relation to the anharmonicity in the γ phase of solid nitrogen.


2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress–strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress–strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress–strain characteristics of filled rubber.


2021 ◽  
Vol 2 (2) ◽  
pp. 36-43
Author(s):  
Evgeniy P. FIGURNOV ◽  
◽  
Yury I. ZHARKOV ◽  
Valeriy I. KHARCHEVNIKOV ◽  
◽  
...  

Methodology provided summarizes published, original and foreign theoretic and experimental data on the subject of heating and cooling of standard and shaped conductors of overhead power transmission line and uses those of them which are most affected to fundamental heat-transfer laws. Computation surface area of standard and shaped wire formulas are given. The common formula of convection heat transfer coefficient is provided, based on wind speed and direction, concerning antiicing mode. Parameters of this formula do not coincide with those existing, as they are based on experimental data on standard and shaped conductors but not on round tubes. Formula of computation of heat transfer power under the influence of solar radiation is given. Summarized formula of admissible continuous current computation is given, all the components have detailed description in the article.


1978 ◽  
Vol 21 (85) ◽  
pp. 115-122
Author(s):  
J. H. Bilgram ◽  
H. Gränicher

AbstractThe interaction of point detects in ice has been neglected for a long time. Experimental data obtained from dielectric measurements on HF-doped crystals stimulated a new evaluation of the possibility of an interaction between Bjerrum defects and ions. In a previous paper it has been shown that this leads us to assume the existence of aggregates of Bjerrum defects and ions. In this paper these aggregates and Bjerrum defects are used to explain the dielectric properties of ice, especially the temperature dependence of the product of the high and low frequency conductivity σ0σ∞.The interaction of Bjerrum defects and impurity molecules leads to a dependence of the concentration of frenkel pairs on Bjerrum-defect concentration. At HF concentrations above the native Bjerrum-defect concentration the formation of a Frenkel pair is enhanced. This leads to the fast out-diffusion which has been studied in highly doped crystals by means of NMR techniques.


2007 ◽  
Vol 21 (19) ◽  
pp. 1239-1252 ◽  
Author(s):  
XIAO-FENG PANG ◽  
BO DENG ◽  
HUAI-WU ZHANG ◽  
YUAN-PING FENG

The temperature-dependence of proton electric conductivity in hydrogen-bonded molecular systems with damping effect was studied. The time-dependent velocity of proton and its mobility are determined from the Hamiltonian of a model system. The calculated mobility of (3.57–3.76) × 10-6 m 2/ Vs for uniform ice is in agreement with the experimental value of (1 - 10) × 10-2 m 2/ Vs . When the temperature and damping effects of the medium are considered, the mobility is found to depend on the temperature for various electric field values in the system, i.e. the mobility increases initially and reaches a maximum at about 191 K, but decreases subsequently to a minimum at approximately 241 K, and increases again in the range of 150–270 K. This behavior agrees with experimental data of ice.


2005 ◽  
Vol 127 (4) ◽  
pp. 408-416 ◽  
Author(s):  
H. Jiang ◽  
Y. Huang ◽  
K. C. Hwang

There are significant efforts to develop continuum theories based on atomistic models. These atomistic-based continuum theories are limited to zero temperature (T=0K). We have developed a finite-temperature continuum theory based on interatomic potentials. The effect of finite temperature is accounted for via the local harmonic approximation, which relates the entropy to the vibration frequencies of the system, and the latter are determined from the interatomic potential. The focus of this theory is to establish the continuum constitutive model in terms of the interatomic potential and temperature. We have studied the temperature dependence of specific heat and coefficient of thermal expansion of graphene and diamond, and have found good agreements with the experimental data without any parameter fitting. We have also studied the temperature dependence of Young’s modulus and bifurcation strain of single-wall carbon nanotubes.


2009 ◽  
Vol 283-286 ◽  
pp. 155-160
Author(s):  
Ivo Stloukal ◽  
Jiří Čermák

Self-diffusion of 110mAg has been investigated in fiber reinforced QE22 magnesium alloy matrix composite. Short Saffil fibers (97% -Al2O3 + 3% SiO2) were used as reinforcement. The diffusion measurements were carried out in the temperature interval 648 – 728 K by serial sectioning method. The volume diffusion coefficients Dv (alloy without reinforcement) and the effective diffusion coefficients Deff (alloy with reinforcement) were obtained by analysis of the penetration curves. The silver diffusion coefficient in the interface boundary matrix/Saffil Di was also estimated. The temperature dependence of volume diffusion coefficients Dv was compared with previous data measured using 65Zn in the same alloy and with literature data for Zn impurity diffusion in Mg single crystal. It was observed, that the temperature dependence of both Deff and Di was significantly non-linear in the measured temperature interval. This behavior supports previous observations with zinc diffusion in the same alloy.


2009 ◽  
Vol 23 (11) ◽  
pp. 2503-2509 ◽  
Author(s):  
S. K. SHARMA

The present paper proposes a computing model for temperature dependence of volume thermal expansivity, volume expansion ratio and second order temperature derivative of volume based on the assumption that the product αKT remains constant at high temperatures and zero pressure. We have taken NaCl and KCl to testify the validity of the present model. A fairly close agreement between the calculated results and experimental data strongly supports the present model.


Sign in / Sign up

Export Citation Format

Share Document