scholarly journals Polymeric Nanosuspensions for Enhanced Dissolution of Water Insoluble Drugs

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Roya Yadollahi ◽  
Krasimir Vasilev ◽  
Clive A. Prestidge ◽  
Spomenka Simovic

The aim of the present research is to formulate and evaluate polymeric nanosuspensions containing three model water insoluble drugs, nifedipine (NIF), carbamazepine (CBZ), and ibuprofen (IBU) with various physicochemical properties. The nanosuspensions were prepared from hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) by a cosolvent technique with polyethylene glycol (PEG-300) and water as the cosolvents. Physicochemical and morphological characteristics of the nanosuspensions (particle size, polydispersity index, and crystallinity) have been correlated with the drug release behaviour. The effects of polymer, drug ratio on the physical, morphological, and dissolution characteristics of the drugs are reported. Drug release is significantly enhanced from the nanosuspensions; for example, the maximum NIF, IBU, and CBZ concentrations after 8-hour dissolution are increased approximately 37, 2, and 1.2 times, respectively, in comparison with the pure powdered drugs. Based on this solubilization enhancement performance, the nanosuspensions have potential for increasing the orally dosed bioavailability of NIF, IBU, and CBZ.

Author(s):  
YOGITA TYAGI ◽  
N. V. SATHEESH MADHAV

Objective: Development and evaluation of selegiline-loaded bio-nanosuspensions using biopolymer which was isolated from seeds of Buchanania lanzan (Chironji), used as biostabilizer and compared with standard polymer. Methods: The selegiline-loaded bio-nanosuspensions were prepared using novel biopolymer and standard stabilizer (hydroxypropyl methylcellulose) by sonication solvent evaporation method with different ratios (1%, 2%, 3%, 4%, and 5%) and evaluated for particle size, polydispersity index, zeta potential, pH stability studies, percentage entrapment efficacy, in vitro drug release, and stability studies. Results: The prepared selegiline bio-nanosuspensions were subjected to the best formulation based on comparison of above-mentioned evaluation parameters, so Fb2 (2%) formulation was found to be the best formulation showing an R2=0.9842, T50% of 32 h and T80% of 70 h, respectively. According to the release kinetics, the best fit model was found to be Peppas-Korsmeyer with Fickian diffusion (Higuchi matrix) as the mechanism of drug release, and Fs5 (5%) formulation was found to be the best formulation showing an R2=0.9564, T50% of 25 h and T80% of 60 h, respectively. According to the release kinetics, the best fit model was found to be Peppas-Korsmeyer with Fickian diffusion (Higuchi matrix) as the mechanism of drug release. The biopolymer provided excellent stability for the formulation and resulting particle size for the best formulation was found to be 360 nm. The best formulation was found to be polydispersity index of 0.43 with zeta potential of −5.12 mV. Conclusion: The prepared bio-nanosuspensions using biopolymer were found to be safe and compatible with the novel drug delivery for the treatment of depression in comparison of standard polymer.


Author(s):  
Shyam Narayan Prasad ◽  
Hemant Kumar Patel ◽  
Abhijit V. Gothoskar

Objective: The present work entails design and characterization of enteric coated mucoadhesive microcapsules loaded with amoxicillin trihydrate as a novel chronotherapeutic approaches for the treatment and management of bacterial infection.Methods: The microcapsules were prepared by solvent evaporation technique using ethyl cellulose (EC) and hydroxypropyl methylcellulose (HPMC) as rate-controlling and mucoadhesive polymers, followed by a triple coating with Eudragit L100 as enteric coating polymer. Box-Behnken statistical design (BBD) was applied for optimization of formulations containing EC, HPMCK100M and Eudragit L100 as factors for selected responses like entrapment efficiency, mucoadhesive property and drug release in 24 h. The optimized microcapsules were also characterized for particle size, drug content, swelling index, mucoadhesive strength, and in vivo antiulcer activity.Results: The optimized microcapsules exhibited good entrapment efficiency, particle size and mucoadhesive property. FT-IR studies revealed that there was no drug-polymer interaction. SEM studies revealed that microcapsules were non-aggregated, spherical in shape and smooth appearance. In vitro drug release data from microcapsules was fitted to different kinetic models to explain release profiles. The correlation coefficient (r2) value indicated that drug release followed Higuchi model. Analysis of variance (ANOVA) showed significant difference in the release of drug from all the prepared formulations at P < 0.05 level. Accelerated stability study of optimized formulation (F4) upto 6 month showed there was no change in drug content and release characteristics during storage.


Author(s):  
Niwash Kumar

Abstract: The purpose of this study was to prepare Pyridostigmine nanoparticles for control release of Pyridostigmine to improve the oral bioavailability, enhance the solubility and dissolution rate by decreasing particle size of drug. Infrared spectroscopic studies confirmed that there was no interaction between drug and polymers. The controlled release Pyridostigmine nanoparticles were prepared by Solvent evaporation by using Ethyl cellulose, Chitosan & HPMC K100 at different ratios. The production yield of the formulated controlled release nanoparticles (F1 to F16) in the range of 76.11 % to 83.58 %. The drug content of the formulated controlled release nanoparticles (F1 to F16) in the range of 82.56 %to 98.20%. The Theoretical loading of the formulated controlled release nanoparticles (F1- F16) in the range of 24.43 % to 64.24%. The entrapment efficiency increased with increasing the concentration of polymers and the formulations containing chitosan nanoparticles F6 (1:2) showed better entrapment (90.94%) among all formulation. The solubility of selected formulation (F6) in 0.2 M Phosphate buffer pH 6.8 increased when compared to pure drug. Particle size distribution was determined by Malvern zeta size, the size range for produced nanoparticles in the range of 200 nm to 400 nm. The Polydispersity index of selected nanoparticle formulation (F6) was indicated a narrow range and a homogeneous size distribution of particles. The in vitro dissolution study was carried out in 0. 2N PBS for 2 hours and phosphate buffer pH 6.8 for 10 hours. The formulations shows controlled release of drug up to 12 hrs and all formulations showed more than 75% of drug release. The release kinetics showed that the formulations were complies with Zero order kinetics followed by diffusion controlled mechanism. The best formulation F6 was evaluated by infrared spectroscopy, particle size, Polydispersity index & zeta potential and Scanning Electron microscopy. Best formulation of nanoparticles shown the extent of drug release was found to be F6 (96.93%) in 12 hrs. SEM studies confirmed the morphology of the nanoparticle formulation. Keywords: Polydispersity index, Zeta potential, Scanning Electron microscopy, Pyridostigmine


2019 ◽  
Vol 4 (1) ◽  

Aim: The present study was designed to develop and characterize nanostructured lipid carriers (NLC) of Ofloxacin and Prednisolone for topical use in case of infections associated with inflammation. Materials and Methods: Ofloxacin was obtained as gift sample from Mankind Pharma Ltd, VillKyarta, P.O. Misserwal, Poonta Sahib, Sir Mour. H.P. Whereas Prednisolone was purchased from Yarrow chem., Mumbai. It was evaluated for its pre-formulation studies (organoleptic properties, melting point, solubility, compatibility, max. wavelength of absorption). NLCs were prepared through melt-emulsification followed by ultra-sonication technique. Further optimized batch of NLCs was incorporated into Gel. Formulated NLCs were evaluated in terms of morphological characteristics, particle size (Polydispersity Index), drug content, In-vitro drug release (using egg membrane), drug release kinetics (Ritger-Peppas diffusion method). Finally, gel containing NLCs was studied by physical characteristics, pH, viscosity, spreadability, drug content, In-vitro drug release and its kinetics. Results and Discussion: In pre-formulation study, drugs were found having the similar properties as described in Indian Pharmacopoeia (IP) and United States Pharmacopoeia (USP). SEM photomicrograph revealed that NLCs were spherical with more or less smooth surface; particle size 512.3-1703 nm and PDI- 0.399-0.742 (ofloxacin) and particle size 539.3-1736.7 nm and PDI- 0.335 - 0.711 (prednisolone);drug content was found in range of 56.7 - 75.6% for ofloxacin and 65.9 – 81.8% for prednisolone. NLC1 demonstrated maximum release rate with 83.37±1.70% and NLC8 73.96±0.53%.NLC6 was best fitted in Korsmeyer - peppas model as the regression coefficients were 0.960, 0.964, 0.977, 0.950, 0.980 & 0.987 respectively and prednisolone NLC 9 (0.953) and they were close to 1. Conclusion: In conclusion, the prepared NLCs had prolonged release effects with good potential for topical delivery of NLC based gel formulation of ofloxacin& prednisolone.


Author(s):  
Md. Ali Mujtaba

Background: Apigenin (APG), a natural bioactive flavonoid, has multiple pharmacological effects. However, its poor aqueous solubility hinders its clinical benefits. Objective and Methods: The work aimed to develop novel apigenin-loaded niosomes (APG-NIO) with ecological probe sonication techniques. The formulation was statistically optimized by Box-Behnken design (BBD), and the independent variables were selected as Span 80 (X1), Poloxamer 188 (X2), and Tween 80 (X3) at three levels, and the dependent variables were identified as: particle size (Y1), polydispersity index (Y2), and % entrapment efficiency (Y3). The formulation was characterized for various parameters such as vesicle shape, size, PDI, %EE, solubility, in vitro drug release, and antioxidant potential. Results: The optimized APG-NIO formulation was found to have a spherical shape with homogenous distribution and a low polydispersity index. It has a particle size of 425.77 nm, zeta potential -17.1±0.9 mV, and %EE of 89.63. The aqueous solubility of APG-NIO was found approximately 45 times higher than that of pure APG. The formulation showed a higher drug release rate as compared to pure APG in phosphate buffer pH 7.4 and followed the Higuchi release model with a non-Fickian transport mechanism. The stability was found at 4°C for 3 months. The antioxidant potential of APG-NIO was significantly increased in comparison to the pure drug suspension in the DPPH• assay. Conclusion: These findings suggest that the probe sonication technique is an alternative, cost-effective, simple, and green method for the development of niosomes, and BBD is a useful optimization tool for identifying the effect of formulation variables.


Author(s):  
Matthew Lam ◽  
Ali Nokhodchi

Abstract Purpose Liqui-Tablet is a dosage form derived from Liqui-Mass technology. It has proven to be a promising approach to improve drug dissolution rate of poorly water-soluble drugs. So far, Liqui-Tablet is feasible for low-dose drugs. In this study, an attempt was made to produce high-dose Liqui-Tablet, whilst maintaining ideal physicochemical properties for ease of manufacturing. Methods Liqui-Tablets containing 100 mg of ketoprofen were produced using various liquid vehicles including PEG 200, Span 80, Kolliphor EL, PG, and Tween 85. Investigations that were carried out included saturation solubility test, dissolution test, tomographic study, and typical quality control tests for assessing flowability, particle size distribution, friability, and tablet hardness. Results The weight of these Liqui-Tablets was acceptable for swallowing (483.8 mg), and the saturation solubility test showed PEG 200 to be the most suitable liquid vehicle (493 mg/mL). Tests investigating physicochemical properties such as flowability, particle size distribution, friability, and tablet hardness have shown no issue concerning quality control and manufacturability. The drug release test of the best formulation has shown extremely rapid drug release at pH 7.4 (100% after 5 min). At pH 1.2 the drug release was reasonable considering the formulation was yet to be optimized. Conclusion Despite the high amount of API and liquid vehicle, it is possible to produce a high-dose dosage form with acceptable size and weight for swallowing using the novel Liqui-Mass technology. This has the potential to diversify the technology by removing the restriction of high dose drug that has been seen in liquisolid technology.


Author(s):  
Dian Eka Ermawati ◽  
Agung P. Surya ◽  
Adi Yugatama

Sweet orange contains flavonoids and citric acid that have the potential as a capping agent in the nanosilver biosynthesis process. The antibacterial activity of silver can be increased in nanoparticles, then it can be applied to treat acne through a peel-off mask preparation. Glycerin and Polyethylene glycol 400 are humectants that combined to obtain good physicochemical properties of the preparation. This study aims to determine the character of nanosilver biosynthesis and the effect of humectant combination on the physicochemical properties of the preparation. The characterization of nanosilver was employed by UV-VIS Spectrophotometry, Particle Size Analysis, and Scanning Electron Microscope. The Glycerin- PEG 400 combination was F1 (0:100%); F2 (25:75%); F3 (50:50%); F4 (75:25%) and F5 (100:0%). The results of nanosilver biosynthesis have an absorption peak of nanoparticles at 421-423nm, rod shape, the particle size of 83.2±7.2nm. Statistical analysis showed that the combination of Glycerin- PEG 400 had a significant effect on organoleptic, viscosity, and dry time, but did not affect the pH of preparation. The combination of Glycerin-PEG 400 (75%:25%) is the best formula because it has stable viscosity, dry time, and pH value during storage for four weeks.Keywords: nanosilver, biosynthesis, Citrus sinensis, humectants, peel off mask


2020 ◽  
Vol 04 ◽  
Author(s):  
Ashvini Herimatha ◽  
Shivanand K. Mutta ◽  
Anirbandeep Bose ◽  
Anudeep Balla

Background:: Chitosan nanoparticles have been extensively studied and used due to their well-recognized applicability in various fields. Chitosan, a natural polysaccharide polymer and is extensively used in pharmaceuticals to deliver a wide variety of therapeutic agents. Chitosan is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of multi particles, particularly nano- and microparticles. Objective:: The main aim of the present study was to optimize the conditions for the preparation of chitosan nanoparticles to get optimal particle size, with optimal zeta potential and narrow polydispersity index, and antibacterial activity. Methods:: Methods include the ionic gelation technique for chitosan nanoparticle preparation. The influence of formulation parameters and process parameters on the Chitosan nanoparticles were investigated. Besides, the suspension stability of the prepared nanoparticles is also assessed on storage at 4°C. Results: clearly showed that the formulation and process parameters showed a significant effect on the physicochemical and morphological characteristics of the chitosan nanoparticles. The chitosan nanoparticles prepared under optimum conditions (chitosan concentration of 0.5% w/v, CS: TPP mass ratio of 1:3, initial pH of chitosan solution of 4.5, stirred at 750 rpm for 30 min) had shown a mean particle size of ~326.8±15 nm, the zeta potential of +28.2 ± 0.5 mV, PDI of 0.21 ± 0.02. The encapsulation of the clarithromycin slightly increased the polydispersity index but the zeta potential of the unloaded nanoparticles was not affected while the particle size increased. Under optimum conditions, clarithromycin encapsulation efficiency into nanoparticles was found to be 70%. Additionally, chitosan-tripolyphosphate nanoparticles were shown to be stable for a minimum of fifteen days in deionized water at 4°C. Conclusion:: The current study concludes on the optimal conditions to formulate the chitosan nanoparticles with optimal physicochemical characteristics.


Author(s):  
Subramanian Manivannan ◽  
Akshay M ◽  
Bhuvaneswari S ◽  
Nify F

ABSTRACTObjective: Gastroretentive dosage forms are an approach for prolonged and predictable drug delivery in the upper gastrointestinal tract to controlthe gastric residence time. Microballoons are considered as one of the most promising buoyant drug delivery systems as they possess the advantagesof both multiple-unit systems and good floating properties. Acebrophylline is a xanthine derivative with potent bronchodilator, mucosecretolytic, andanti-inflammatory property. It is used to treat bronchial asthma and chronic obstructive pulmonary diseases.Methods: Microballoons of acebrophylline were prepared by emulsion solvent diffusion method using hydroxypropyl methylcellulose (HPMC) andethyl cellulose (EC) as polymer. The microballoons were evaluated with their micromeritic properties, particle size, tapped density, compressibilityindex, angle of repose, percentage yield, in vitro buoyancy, entrapment efficiency, drug-polymer compatibility, scanning electron microscopy (SEM),and drug release kinetics.Results: The mean particle size of the microballoons formulation MB1 to MB6 containing HPMC and EC was in the range between 226±16 and 577±10,respectively. The mean particle size of microballoons was found to increase with increasing polymer concentration. The micromeritic properties werefound be good, and SEM confirmed their hollow structure with smooth and dense which helped to prolong floating to increase residence time instomach. The in vitro drug release studies showed controlled release of acebrophylline microballoons in the simulated gastric fluid more than 12 hrs.Conclusions: The results showed that the prepared floating microballoons of acebrophylline prove to be potential multiple-unit delivery devicesadaptable for safe and effective sustained drug delivery.Keywords: Microballoons, Acebrophylline, Bronchial asthma, Hydroxypropyl methylcellulose, Ethyl cellulose.


Sign in / Sign up

Export Citation Format

Share Document